Сингулярное разложение в линейной задаче метода наименьших квадратов

Сдавался/использовалсяМатематический факультет/ Кафедра прикладной математики/Владикавказ/2002
Загрузить архив:
Файл: diiplom.zip (244kb [zip], Скачиваний: 93) скачать

[1] и унитарна[2]. Предположим, что дан вектор х размерности m, тогда существует матрица H  такая, что

а s = +1, при положительной первой компоненте вектора х и = –1, при отрицательной.

Доказательство. Положимдействительная матрица. Любую действительную матрицу можно привести в треугольному виду

Далее принимаем во внимание то, что и получаем следующее:

[3] матрицы А; это положительные значения квадратных корней из собственных значений матрицы АТА (которая при невырожденной матрице А положительно определена[4], в противном случае положительно полуопределена (неотрицательно определена[5]) и поэтому имеет только вещественные собственные значения ³ 0). Для вещественных симметричных матриц сингулярные числа равны абсолютным величинам собственных значений:

Умножение вектора х на матрицу А приводит к новому вектору Ах, норма которого может очень сильно отличаться от нормы вектора х.

Область изменений может быть задана двумя числами

Максимум и минимум берутся по всем ненулевым векторам. Заметим, что если А вырождена, то m=0. Отношение M/m называется числом обусловленности матрицы А,

                                (7)

Рассмотрим норму обратной[6] матрицы

Для матрицы А существует сингулярное разложение и – 1/есть величины, обратные собственным числам матрицы

Рассмотрим систему уравнений Ax=b, и другую систему, полученную изменением правой части: A(x+Dx)=b+Db . Будем считать Db ошибкой в b, а Dx соответствующей ошибкой в x, хотя нам нет необходимости считать ошибки малыми. Поскольку A(Dx)=Db, то определения M иm немедленно приводят к неравенствам Следовательно , при m¹0,

Величина есть относительное изменение правой части, а величина   – относительная ошибка, вызванная этим изменением. Аналогичные выкладки можно провести не только с элементами вектора правой части но и с элементами самой матрицы А и найти зависимость между относительным изменением элементов матрицы и относительной ошибкой вызванной этим изменением. Отсюда следует, что число обусловленности выполняет роль множителя в увеличении относительной ошибки.

Приведем некоторые свойства числа обусловленности. Ясно, что M³m и поэтому cond(А)³1. Если Р – матрица перестановок[7], то компоненты вектора Px лишь порядком отличаются от компонент вектора х. Отсюда следует, что и cond(P)=1 . В частности cond(I)=1. Если А умножается на скаляр с, то cond(cА)= cond(А). Если D – диагональная матрица, то

[8] а также используется алгоритм со сдвигом. Форма Хессенберга представляет из себя верхнюю треугольную матрицу (верхняя форма Хессенберга) у которой сохранена одна диагональ ниже главной, а элементы ниже этой диагонали равны нулю. Если матрица симметрична, то легко видеть, что матрица Хессенберга превращается в трехдиагональную матрицу[9]. При использовании матрицы Хессенберга время процесса пропорционально n2, а при использовании трехдиагональной матрицы – n.

Можно использовать другие соотношения

где Qs – унитарная, а Ls – нижняя треугольная матрица. Такой алгоритм носит название QL–алгоритма.

В общем случае, когда все собственные значения матрицы различны, последовательность матриц Asимеет пределом нижнюю треугольную матрицу А, расположенные в порядке возрастания их модулей. Если матрица А имеет кратные собственные значения, то предельная матрица не является треугольной, а содержит диагональные блоки порядка p, соответствующие собственному числу кратности p.

В общем случае, наддиагональныйэлемент матрицы As на s-ом шаге асимптотически равен kij – постоянная величина. Сходимость QL–алгоритма вообще говоря недостаточна. Сходимость можно улучшить, если на каждом шаге вместо матрицы As использовать матрицу As-ksI (QL–алгоритм со сдвигом). Последовательность вычислений в этом случае описывается следующими соотношениями:

которые определяют матрицу определено соотношением ks выбрать близко к величине (наименьшее собственное значение), то в пределе внедиагональные элементы первой строки будут очень быстро стремиться к нулю. Когда ими можно пренебречь, элемент с рабочей точностью равен n-1-го порядка. Тогда, если QL–алгоритм выполнен без ускорения сходимости, то все равно ks.

Если матрица А эрмитова, то очевидно, что и все матрицы Аs эрмитовы; если А действительная и симметричная, то все Qs ортогональны и все Аs действительны и симметричны.

[1] Матрица А эрмитова если она совпадает со своей комплексно сопряженной

[2] Матрица А унитарная если – сопряженная матрица.

[3] Сингулярным разложением произвольной m´n–матрицы называется разложение вида U и V – ортогональные матрицы, а S – диагональная матрица с неотрицательными диагональными элементами. Диагональные элементы S ( i=1,...,k, где k=min(m,n)) называются сингулярными числами А. Это множество чисел однозначно определяется матрицей А. Число ненулевых сингулярных чисел равно рангу А.

[4] Симметричная матрица положительно определена, если все ее собственные значения положительны. Положительно определенная матрица P обладает также тем свойством, что для всех

[5] Симметричная матрица неотрицательно определена, если все ее собственные значения неотрицательны. Такая матрица P обладает также тем свойством, что для всех mxn–матрицы А матрица симметрична и неотрицательно определена. Она положительно определена, если rankA=n.

[6] Обратной матрицей для квадратной невырожденной матрицы А называется такая матрица, для которой

[7] Матрица перестановки - это квадратная матрица, столбцы которой получаются перестановкой столбцов единичной матрицы. Матрица перестановки ортогональна.

[8] Матрица А хессенбергова (верхняя хессенбергова) если для j

[9] Симметричная матрица А есть трехдиагональная при для |i-j|>1. Трехдиагональная матрица – это частный случай хесенберговой матрицы.