Луна - естественный спутник Земли

Загрузить архив:
Файл: ref-21028.zip (237kb [zip], Скачиваний: 190) скачать

                         

Муниципальное образовательное учреждение общего и среднего образования № 61.

Экзаменационная работа

по астрономии за курс полной

средней школы (реферат)

«Луна - Естественный спутник Земли»

Выполнил ученик 11 «а» класса

Средней школы № 61

**************************************

Учитель астрономии

**************************************

Тольятти 2004.

Оглавление

1.    Введение……………………………………………………...3 стр.

Раздел 1

2.1. Мифологическая история Луны…………………………...5 стр.

2.2. Происхождение Луны……………………………………….5 стр.

Раздел 2

3.1. Лунные затмения…………………………………………….6 стр.

3.2. Затмения в прежние времена……………………………..7 стр.

Раздел 3

4.1. Форма Луны…………………………………………………..8 стр.

4.2. Поверхность Луны…………………………………………..9 стр.

4.3. Рельеф лунной поверхности…………………………….10 стр.

4.4. Лунный грунт………………………………………………..11 стр.

4.5. Внутреннее строение Луны………………………………12 стр.

Раздел 4

5.1. Фазы Луны…………………………………………………..13 стр.

5.2. Новый этап в исследовании Луны………………………14 стр.

5.3. Магнетизм Луны……………………………………………16 стр.

Раздел 5

6.1. Исследование приливных электростанций……………17 стр.

Раздел 6

7.1. Вывод………………………………………………………...25 стр.

1. Введение.

Луна - естественный спутник Земли и самый яркий объект на ночном небе. На Луне нет привычной для нас атмосферы, нет рек и озер, растительности и живых организмов. Сила тяжести на Луне в шесть раз меньше, чем на Земле. День и ночь с перепадами температур до 300 градусов длятся по две недели. И, тем не менее, Луна все больше привлекает землян возможностью использовать ее уникальные условия и ресурсы.

Изображение западного полушария Луны, включая Море Восточное, полученное американским КА "Галилео". Море Восточное диаметром 1000 км находится слева от центра снимка (20 ю. ш., 265 в. д.). Правая часть снимка - видимая сторона Луны, левая - обратная сторона. Темная область вверху, справа - Океан Бурь, круговое море под ним - Море Влажности. Темный район слева, внизу - бассейн Южный полюс - Эйткен. Изображение получено с расстояния 560 000 км. (Galileo, P-37329)

      Добыча природных запасов на Земле затрудняется с каждым годом. По прогнозам ученых в ближайшем будущем человечество вступит в сложный период. Земная среда обитания исчерпает свои ресурсы, поэтому уже сейчас необходимо начинать осваивать ресурсы других планет и спутников. Луна, как ближайшее к нам небесное тело станет первым объектом для внеземного промышленного производства. Создание лунной базы, а затем и сети баз, планируется уже в ближайшие десятилетия. Из лунных пород можно извлекать кислород, водород, железо, алюминий, титан, кремний и другие полезные элементы. Лунный грунт является прекрасным сырьем для получения различных строительных материалов, а также для добычи изотопа гелий-3, который способен обеспечить электростанции Земли безопасным и экологически чистым ядерным горючим. Луна будет использоваться для уникальных научных исследований и наблюдений. Изучая лунную поверхность ученые могут "заглянуть" в очень древний период нашей собственной планеты, поскольку особенности развития Луны обеспечили сохранность рельефа поверхности в течение миллиардов лет. Кроме того, Луна послужит экспериментальной базой для отработки космических технологий, а в дальнейшем будет использоваться как ключевой транспортный узел межпланетных сообщений.

Луна, единственный естественный спут­ник Земли и ближайшее к нам небесное тело; среднее расстояние до Луны - 384000 километров.

     Лунадвижется вокруг Земли со средней скоростью 1,02 км/сек по приблизительно эллиптической  орбите в том же направлении, в котором движется по­давляющее большинство других тел Солнеч­ной системы, то есть  против часовой стрелки, если смотреть на орбиту Луны со стороны Северного полюса мира. Большая полуось орбиты Луны, равная среднему расстоянию меж­ду центрами Земли и Луны, составляет 384 400 км (приблизительно 60 земных радиусов).

Поскольку масса Луны относительно мала, плотной газовой оболочки - атмосферы у нее практически нет. Газы свободно рассеиваются в окружающем космическом  пространстве. Поэтому поверхность Луны освещается прямыми солнечными лучами. Тени от неровностей рельефа здесь очень глубоки и черны, поскольку нет рассеянного света. Да и Солнце с лунной поверхности будет выглядеть гораздо ярче. Разреженная газовая оболочка Луны из водорода, гелия, неона и аргона в десять триллионов раз меньше по плотности, чем наша атмосфера, но в тысячу раз больше, чем количество молекул газа в космическом вакууме. Поскольку Луна не имеет плотной защитной оболочки из газа, на ее поверхности в течение суток происходят очень большие изменения температуры. Солнечное излучение поглощается лунной поверхностью, которая слабо отражает лучи света.

Вследствие эллиптичности орби­тыи воз­мущений расстояние до Луны колеблется между 356 400 и 406 800 км. Период обраще­ния Луны вокруг Земли, так называемый    сидерический (звездный) месяц равен 27,32166 суток, но подвержен небольшим колебаниям и очень малому вековому сокращению. Движение Луны вокруг Земли очень сложно, и его изучение составляет одну из труднейших задач небесной ме­ханики. Эллиптическое движение представ­ляет собой лишь грубое приближение, на него накладываются многие возмуще­ния, обусловленные притяжением Солнца, планет. Главней­шие из этих возмущений, или неравенств, были открыты из наблюдений задолго до теоретического вы­вода их из закона всемирного тяготения. Притяжение Луны Солнцем в 2,2 раза сильнее, чем Землей, так что, строго говоря, следовало бы рассматривать движение Луны вокруг Солнца и возмущения этого движения Землей. Однако, поскольку исследователя интересует движение Луны, каким оно видно с Земли, гравитационная тео­рия, которую разрабатывали многие круп­нейшие ученые, начиная с И. Ньютона, рассматривает движение Луны именно вок­руг Земли. В 20 веке пользуются теорией американского математика Дж. Хилла, на основе которой американский астроном Э. Браун вычислил (1919 г.) математически, ряды и составил таблицы, содержащие широту, долготу и параллакс Луны. Аргументом служит время.

Плоскость орбиты Луны наклонена к эклиптике под углом 5*8”43”, подверженным небольшим колебаниям. Точки пересечения орбиты с эклиптикой, называются восходящим и нисходящим узлами, имеютнеравномерное попятное движение и совершают полный оборот по эклиптике за6794 суток (около 18 лет), вследствие чегоЛуна возвращается к одному и тому же узлу через интервал времени - так называемый драконическиймесяц, - более короткий, чем сидерический и в среднемравный 27.21222 суток, с этим месяцемсвязана периодичность солнечных и лун­ных затмений.

Луна вращается вокруг оси, наклоненной к плоскости эклиптики под углом 88°28', с периодом, точно равным сидерическому месяцу, вслед­ствие чего она повернута к Земле всегда одной и той же стороной. Однако сочетание равномерного враще­ния с неравномерным движением по ор­бите вызывает небольшие периодические от­клонения от неизменного направления к Земле, достигающие 7° 54' по долготе, а наклон оси вращения Луны к плоскости ее орбиты обусловливает отклонения до 6°50' по широте, вследствие чего в разное время с Земли можно видеть до 59 % всей поверхности Луны (хотя области близ краев лунного диска видны лишь в сильном перспективном ракурсе); та­кие отклонения называются либрацией Луны. Плоскости экватора Луны, эклиптики и лун­ной орбиты всегда пересекаются по одной прямой (закон Кассини).

В движение Луны различают четыре лунных месяца.

29, 53059 суток          СИНОДИЧЕСКИЙ(от слова synodion-встреча).

27, 55455 суток          АНОМАЛИТИЧЕСКИЙ( угловое расстояние Луны от её перигея называли аномалией).

27, 32166 суток           СИДЕРИЧЕСКИЙ(siderium- звездный)

27, 21222 сутокДРАКОНИЧЕСКИЙ(узлы орбиты обозначают значком   похожими на дракона).

Цель: Узнать как можно больше о естественном единственном спутнике Земли – Луне. О её пользе и значении в жизни людей о происхождении, истории, движении, и т.д.

Задачи:

1. Узнать об истории Луны.

2. Узнать о лунных затмениях.

3. Узнать о строении Луны.

4. Узнать о новых исследованиях Луны.

5. Исследовательская работа.

6. Вывод

2.1. Мифологическая история Луны.

   Луна в римской мифологии является богиней ночного света. Луна имела несколько святилищ, одно вместе с богом солнца. В египетской мифологии богиня луны – Тефнут и ее сестра Шу – одно из воплощений солнечного начала, были близнецами. В индоевропейской и балтийской мифологии широко распространен мотив ухаживания месяца за солнцем и их свадьбы: после свадьбы месяц покидает солнце, за что ему мстит бог-громовержец и разрубает месяц пополам. В другой мифологии месяц, живший на небе вместе со своей женой-солнцем, пошел на землю посмотреть, как живут люди. На земле за месяцем погналась Хоседэм (злое женское мифологическое существо). Месяц, торопливо возвращающийся к солнцу, только наполовину успело войти в его чум. Солнце схватило его за одну половину, а Хоседэм за другую и начали тянуть его в разные стороны, пока не разорвали пополам. Солнце пыталось потом оживить месяц, оставшийся без левой половины и тем самым без сердца, пробовало сделать ему сердце из угля, качало его в колыбели (шаманский способ воскрешения человека), но все было тщетно. Тогда солнце повелело месяцу, чтобы он светил ночью оставшейся у него половиной. В армянской мифологии Лусин («луна») – молодой юноша попросил у матери, державшей тесто, булочку. Рассерженная мать дала пощечину Лусину, от которой он взлетел на небо. До сих пор на его лице видны следы теста. По народным поверьям, фазы луны связаны с циклами жизни царя Лусина: новолуние – с его юностью, полнолуние – со зрелостью; когда луна убывает и появляется полумесяц, наступает старость Лусина, который затем уходит в рай (умирает). Из рая он возвращается возрожденным.

Известны также мифы о происхождении луны из частей тела (чаще всего из левого и правого глаза). У большинства народов мира есть особые Лунные мифы, объясняющие возникновение пятен на луне, чаще всего тем, чтотам находится особый человек(«лунный человек» или «лунная женщина»). Божеству луны многие народы придают особое значение, считая, что оно дает необходимые элементы для всего живого.

2.2. Происхождение Луны.

Происхождение Луны окончательно еще не установлено. Наиболее разработаны три разные гипотезы. В конце XIX в. Дж. Дарвин выдвинул гипотезу, согласно которой Луна и Земля первоначально составляли одну общую расплавленную массу, скорость вращения которой увеличивалась по мере ее остывания и сжатия; в результате эта масса разорвалась на две части: большую - Землю и меньшую - Луну. Эта гипотеза объясняет малую плотность Луны, образованной из внешних слоев первоначальной массы. Однако она встречает серьезные возражения с точки зрения механизма подобного процесса; кроме того, между породами земной оболочки и лунными породами есть существенные геохимические различия.

Гипотеза захвата, разработанная немецким ученым К. Вейцзеккером, шведским ученым Х. Альфвеном и американским ученым Г. Юри, предполагает, что Луна первоначально была малой планетой, которая при прохождении вблизи Земли в результате воздействия тяготения последней превратилась в спутник Земли. Вероятность такого события весьма мала, и, кроме того, в этом случае следовало бы ожидать большего различия земных и лунных пород.

Согласно третьей гипотезе, разрабатывавшейся советскими учеными - О. Ю. Шмидтом и его последователями в середине XX века, Луна и Земля образовались одновременно путем объединения и уплотнения большого роя мелких частиц. Но Луна в целом имеет меньшую плотность, чем Земля, поэтому вещество протопланетного облака должно было разделиться с концентрацией тяжелых элементов в Земле. В связи с этим возникло предположение, что первой начала формироваться Земля, окруженная мощной атмосферой, обогащенной относительно летучими силикатами; при последующем охлаждении вещество этой атмосферы сконденсировалось в кольцо планетезималей, из которых и образовалась Луна. Последняя гипотеза на современном уровне знаний (70-е годы 20 века) представляется наиболее предпочтительной. Не так давно возникла четвертая теория, которая и принята сейчас как наиболее правдоподобная. Это гипотеза гигантского столкновения. Основная идея состоит в том, что, когда планеты, которые мы видим теперь, только еще формировались, некое небесное тело величиной с Марс с огромной силой врезалось в молодую Землю под скользящим углом. При этом более легкие вещества наружных слоев Земли должны были бы оторваться от нее и разлететься в пространстве, образовав вокруг Земли кольцо из обломков, в то время как ядро Земли, состоящее из железа, сохранилось бы в целости. В конце концов, это кольцо из обломков слиплось, образовав Луну. Теория гигантского столкновения объясняет, почему Земля содержит большое количество железа, а на Луне его почти нет. Кроме того, из вещества, которое должно было превратиться в Луну, в результате этого столкновения выделилось много различных газов – в частности кислород. 

3.1. Лунные затмения.

     Из-за того, что Луна, обращаясь вокруг Земли, бывает иногда на одной линии Земля- Луна- Солнце, возникаютсолнечные или лунные затмения- интереснейшие и эффектные явления природы, вызывавшие страх в прошлые века, так как люди не понимали, что происходит. Им казалось, что какой- то невидимый черный дракон пожирает Солнце и люди могут остаться в вечном мраке. Поэтому летописцы всех народов тщательно заносили в свои хроники сведения о затмениях. Так летописец Кирилл из Новгородского Антониева монастыря 11 августа 1124 года записал: « Перед вечернейнача убывати Солнца, и наибе все. О велик страх и тьма быеть!». История донесла до нас случай, когда солнечное затмение привело в ужас сражающихся индейцев и медян. В 603 году до н.э. на территории современной Турции и Ирана. Воины в страхе побросали оружия и прекратили бой , после чего, устрашенные затмением заключили мир и долго не воевали друг с другом. Солнечные затмения бывают только в новолуние, когда Луна проходит не ниже и не выше, а как раз по солнечному диску и, словно гигантская заслонка, загораживает собой солнечный диск, «перекрывая Солнцу путь». Но затмения в разных местах видны по- разному, в одних Солнце закрывается полностью- полное затмение, в других частично- неполное затмение. Суть явления заключается в том, что Земля и Луна, освещенные Солнцем, отбрасывают концы теней(сходящиеся) и концы тени(расходящиеся) . Когда Луна попадает на одну линию с Солнцем и Землей и находится между ними, лунная тень движется по Земле с запада на восток. Диаметр полной лунной тени не превышает 250 км, поэтому одновременно затмение Солнца видно лишь на малом участке Земли. Там, где на Землю падает полутень Луны, наблюдается неполное затмение Солнца. Расстояние между Солнцем и Землёй не всегда одинаково: зимой в северном полушарии Земли ближе к Солнцу, а летом дальше. Луна обращаясь вокруг Земли, тоже проходит на разные расстояния- то ближе, то дальше от неё. В случае, когда Луна отстает дальше от Земли и загородить полностью диск Солнца не может, наблюдатели видят вокруг черной Луны сверкающий края солнечного диска- происходит красивейшее кольцеобразное затмение Солнца. Когда у древних наблюдателей записи затмений накопились за несколько столетий, они заметили, что затмение повторяются через каждые 18 лет и 11 с третью суток. Этот срок египтяне назвали «саросом», что значит «повторение». Однако для определения, где будет видно затмение, необходимо, конечно же, произвести более сложные вычисления. В полнолуние Луна иногда попадает в земную тень полностью или частично, и мы видим, соответственно полное или частичное затмение Луны. Луна намного меньше Земли, поэтому затмение продолжается до 1ч. 40мин. При этом даже при полном лунном затмении Луна остаётся видимой, но окрашивается в багровый цвет, что вызывает неприятные ощущения. В старину затмения Луны боялись как страшного предзнаменования, считали, что « месяц кровью обливается». Солнечные лучи, преломляясь в атмосфере Земли, попадают в конус земной тени. При этом атмосферой активно поглощаются голубые и соседние с ними лучи солнечного спектра, а пропускаются внутрь конуса тени преимущественно красные лучи, которые поглощаются слабее , они то и придают Луне зловещий красноватый цвет. Вообще, лунные затмения- довольно редкое явление природы. Казалось бы, что лунные  затмения должны наблюдаться ежемесячно- в каждое полнолуние. Но так в действительности не бывает. Луна проскальзывает либо под земной тенью, либо над ней, и в новолуние тень Луны обычно проносится мимо Земли, и тогда затмения тоже не получаются. Поэтому затмения не так уж часты.

                                        Схема полного затмения Луны.


         Полные Лунные Затмения

                  1995 – 2005 гг.

  Дата                                  Продолжительность

19964 апреля                           1 ч 24 мин

1996  27 сентября                    1 ч 12 мин                           

1997  16 сентября                   1 ч6 мин

2000  21 января                        1 ч 16 мин 

2000  16 июля                                  1 ч             

2001  9 января                             30 мин                 

2003  16 мая                                 26 мин         

2004  4 мая                                    38 мин

2004 28 октября                            40 мин

                                          

3.2. Затмения в прежние времена.

    В древности затмения Солнца и Луны чрезвычайно интересовали людей. Философы Древней Греции были убеждены, что Земля является шаром, поскольку они заметили, что тень Земли, падающая на Луну, всегда имеет форму круга. Более того, они подсчитали, что Земля примерно втрое больше Луны, просто исходя из продолжительности затмений. Данные археологии позволяют предположить, что многие древние цивилизации пытались предсказывать затмения. Результаты наблюдений в Стоунхендж, в Южной Англии, могли давать возможность людям позднего каменного века, 4000 лет назад, предсказывать некоторые затмения. Они умели вычислять время прихода летнего и зимнего солнцестояний. В Центральной Америке 1000 лет назад астрономы майя могли предсказывать затмения, выстраивая длинный ряд наблюдений и отыскивая повторяющиеся сочетания факторов.Почти одинаковые затмения повторяются каждые 54 года 34 дня.

4.4. Как часто мы можем видеть затмения.

Хотя Луна проходит по своей орбите вокруг Земли раз в месяц, затмения не могут происходить ежемесячно из-за того, что плоскость орбиты Луны наклонена относительно плоскости орбиты Земли вокруг Солнца. Самое большее, за год может произойти семь затмений, из которых два или три должны быть лунными. Солнечные затмения происходят только в новолуние, когда Луна находится в точности между Землей и Солнцем. Лунные же затмения всегда бывают в полнолуние, когда Земля находится между Землей и Солнцем. За всю жизнь мы можем надеяться увидеть 40 лунных затмений (при условии, что небо будет ясным). Наблюдать солнечные затмения более трудно из-за узости полосы затмений Солнца.                     

4.1. Форма Луны

Мозаика 1500 снимков, полученных КА "Клементина" на южную полярную область Луны через красный фильтр. В центре снимка - южный полюс. Изображение простирается до 70 параллели ю. ш. Поперечник снимка 1250 км. Депрессия около южного полюса находится в постоянной тени и в ней может быть выявлен лед. Вблизи края снимка виден кратер Шредингер диаметром 320 км.

Форма Луны очень близка к шару срадиусом 1737 км, что равно 0,2724 экваториального радиуса Земли. Площадьповерхности Луны составляет 3,8 * 107 кв. км., а объем 2,2 * 1025 см3. Более детальное опреде­ление фигуры Луны затруднено тем, что на Луне, из-за отсутствия океанов, нет явно выраженной уровненной поверхности по отношению к которой можно было бы опре­делить высоты и глубины; кроме того, поскольку Луна повернута к Земле одной стороной, измерять с Земли радиусы то­чек поверхности видимого полушария Луны (кроме точек на самом краю лунною диска) представляется возможным лишь на основании слабого стереоскопического эф­фекта, обусловленного либрацией. Изу­чение либрации позволило оценить разность главных полуосей эллипсоида Луны. Полярная ось меньше экваториальной, направленной в сторону Земли, примерно на700 м и меньше экваториальной оси, перпендикулярной направлению на Землю, на 400 м. Таким образом, Луна под влиянием приливных сил, немного вытянута всторону Земли. Масса Луны точнее всего определяется из наблюдений её искусственных спутников. Она в 81 раз меньше массы земли, что соответствует 7.35 *1025 г. Средняя плотность Луны равна 3,34 г. см3 (0.61 средней плотности Земли). Ускорение силы тяжести на поверхности Луны в 6 раз больше, чем на Земле, составляет 162.3 см. сек и уменьшается на 0.187 см. сек2 при подъеме на 1 километр. Первая космическая скорость 1680 м. сек, вторая 2375 м. сек. Вследствие малого притяжения Луна не смогла удержать вокруг себя газовой оболочки, а также воду в свободном состоянии.

4.2. Поверхность Луны

       Обратная сторона Луны

Поверхность Луны довольно темная,ее альбедо равно 0.073, то естьона отражает в среднем лишь 7.3 % световыхлучей Солнца. Визуальная звездная величина полной Луны на среднем расстоянии равна - 12.7; она посылает в полнолуние на Землю в 465 000 раз меньше света, чем Солнце. В зависимости от фаз, это количество света уменьшается гораздо быстрее, чем площадь освещен­ной части Луны, так что когда Луна находится в четверти, и мы видим половину ее диска светлой, она посылает нам не 50 %, а лишь 8 % света от полной Луны Показатель цвета лунного света равен + 1.2, то есть  он заметно краснее солнечного. Луна вра­щается относительно Солнца с периодом, равным синодическому месяцу, поэтому день на Луне длится почти 1.5 сутки и столько же продолжается ночь. Не будучи защищена атмосферой, поверхность Луны нагревается днем до + 110о С, а ночью остывает до -120° С, однако, как показали радионаблюдения, эти огромные колебания температуры проникают вглубь лишь на несколько дециметров вследствие чрезвычайно слабой теп­лопроводности поверхностных слоев. По той же причине и во время полных лунных затмений нагретая поверхность бы­стро охлаждается, хотя некоторые места дольше

Перспективный снимок внутренней части кратера Коперник диаметром 100 км,полученный КА "Лунар Орбитер 2". Центральный пик кратера поперечником 15 км имеет высоту 400 м.

На заднем плане - северный вал кратера.

     Даже невооруженным глазом на Луневидны неправильные протяженные темноватые пятна, которые были приняты заморя; название сохранилось, хотя и было  установлено, что эти образования ничего общего с земными морями не имеют.Телескопические наблюдения, которым положилначало в 1610 Г. Галилей, позволили об­наружить гористое строение поверхности Луны. Выяснилось, что моря - это равнины более темного оттенка, чем другиеобласти, иногда называемые континентальны­ми (или материковыми), изобилующие горами, большинство которых имеет коль­цеобразную форму (кратеры). По много­летним наблюдениям были составлены подробные карты Луны. Первые такие кар­ты издал в 1647 Я. Гевелий в Ланцете (Гданьск). Сохранив термин “моря”, он присвоил названия также и главней­шим лунным хребтам - по аналогичным земным образованием: Апеннины, Кав­каз, Альпы. Дж. Риччолив 1651 дал обширным темным низменностям фантастические названия: Океан Бурь, Море Кризисов, Море Спокойствия, Мо­ре Дождей и так далее, меньше примыкаю­щие к морям темные области он назвал заливами, например, Залив Радуги, а неболь­шие неправильные пятна - болотами, например Болото Гнили. Отдельные горы, главным образом кольцеобразные, он назвал именами выдающихся ученых: Коперник, Кеплер, Тихо Браге и другими. Эти названия сохранились на лунных картах и поныне, причем добавлено много новых имен вы­дающихся людей, ученых более позднего времени. На картах обратной стороны Луны, составленных по наблюдениям, выпол­ненным с космических зондов и искусст­венных спутников Луны, появились имена К. Э. Циолковского, С. П. Королева, Ю. А. Гагарина и других. Подробные и точные карты Луны были составлены по телескопическим наблюдениям в 19 веке немецкими астрономами И. Медлером, Й. Шмидтом и др. Карты составлялись в ортографической проекции для средней фазы либрации, то естьпримерно такими, какой Луна видна с Земли. В конце 19 века начались фотографические наблюдения Луны.

     В 1896-1910 большой атлас Луны был издан французскими астрономами М. Леви и П. Пьюзе по фотографиям, полученным на Парижской обсерватории; позже фотографический альбом Луны издан Ликской обсер­ваторией в США, а в середине 20 века Дж. Койпер (США) составил несколько детальных атласов фотографий Луны, полученных на крупных телескопах разных астрономических обсерваторий. С помощью современных телескоповна Луне можно заметить, но не рассмотреть кратеры размером около 0,7 километров и трещины шириной в первые сот­ни метров.

     Большинство морей и кратеров на видимой стороне были названы итальянским астрономом Риччиолли в середине семнадцатого века в честь астрономов, философов и других ученых. После фотографирования обратной стороны Луны появились новые названия на картах Луны. Названия присваиваются посмертно. Исключением являются 12 названий кратеров в честь советских космонавтов и американских астронавтов. Все новые названия утверждаются Международным астрономическим союзом.

преимущества приливной гидроэнергетики.

Экологическая характеристика приливных электростанций

Экологическая безопасность:

  • плотины ПЭС биологически проницаемы
  • пропуск рыбы через ПЭС происходит практически беспрепятственно
  • натурные испытания на Кислогубской ПЭС не обнаружили погибшей рыбы или ее повреждений (исследования Полярного института рыбного хозяйства и океанологии)
  • основная кормовая база рыбного стада - планктон: на ПЭС гибнет 5-10 % планктона, а на ГЭС - 83-99 %
  • снижение солености воды в бассейне ПЭС, определяющее экологическое состояние морской фауны и льда составляет 0,05-0,07 %, т.е. практически неощутимо
  • ледовый режим в бассейне ПЭС смягчается
  • в бассейне исчезают торосы и предпосылки к их образованию
  • не наблюдается нажимного действия льда на сооружение
  • размыв дна и движение наносов полностью стабилизируются в течение первых двух лет эксплуатации
  • наплавной способ строительства дает возможность не возводить в створах ПЭС временные крупные стройбазы, сооружать перемычки и прочее, что способствует сохранению окружающей среды в районе ПЭС
  • исключен выброс вредных газов, золы, радиоактивных и тепловых отходов, добыча, транспортировка, переработка, сжигание и захоронение топлива, предотвращение сжигания кислорода воздуха, затопление территорий, угроза волны прорыва
  • ПЭС не угрожает человеку, а изменения в районе ее эксплуатации имеют лишь локальный характер, причем, в основном, в положительном направлении.
  • Энергетическая характеристика приливных электростанций

Приливная энергия

  • возобновляема
  • неизменна в месячном (сезонном и многолетнем) периодах на весь срок эксплуатации
  • независима от водности года и наличия топлива
  • используется совместно с электростанциями других типов в энергосистемах как в базе, так и в пике графика нагрузок
  • Экономическое обоснование приливных электростанций



     Стоимость энергии на ПЭС самая низкая в энергосистеме по сравнению со стоимостью энергии на всех других типах электростанций, что доказано за 33-летнюю эксплуатацию промышленной ПЭС Ранс во Франции - в энергосистеме Electricite de France в центре Европы.

За 1995 г. стоимость 1кВт.ч электроэнергии ( в сантимах) на:

                     ПЭС -18,5

                     ГЭС -22,61

                     ТЭС -34,2

                     АЭС -26,15

     Себестоимость кВтч электроэнергии (в ценах 1996 г.) в ТЭО Тугурской ПЭС - 2,4 коп., в проекте Амгуеньской АЭС - 8,7 коп.
ТЭО Тугурской (1996 г.) и материалы к ТЭО Мезенской ПЭС (1999 г.) благодаря применению эффективных технологий и нового оборудования впервые обосновали равнозначность капитальных затрат и сроков строительства крупных ПЭС и новых ГЭС в идентичных условиях.

   

      Социальное значение приливных электростанций

Приливные электростанции не оказывают вредного воздействия на человека:

  • нет вредных выбросов (в отличие от ТЭС)
  • нет затопления земель и опасности волны прорыва в нижний бьеф (в отличие от ГЭС)
  • нет радиационной опасности (в отличие от АЭС)
  • влияние на ПЭС катастрофических природных и социальных явлений (землетрясения, наводнения, военные действия) не угрожают населению в примыкающих к ПЭС районах.

Благоприятные факторы в бассейнах ПЭС:

· смягчение (выравнивание) климатических условий на примыкающих к бассейну ПЭС территориях

· защита берегов от штормовых явлений

· расширение возможностей хозяйств марикультуры в связи с увеличением почти вдвое биомассы морепродуктов

· улучшение транспортной системы района

· исключительные возможности расширения туризма.

ПЭС в энергосистеме Европы

PRIVATE "TYPE=PICT;ALT="

Вариант использования ПЭС в энергосистеме Европы - - -

      По оценкам экспертов, они могли бы покрыть около 20 процентов всей потребности европейцев в электроэнергии. Подобная технология особенно выгодна для островных территорий, а также для стран, имеющих протяженную береговую линию.

------------- ----- ------ ------- ------- ------ -------- ------- ------- ------ ------ ----- --------- ---------------                  

Другой способ получения альтернативной электроэнергии – использовать разницу в температурах между морской водой и холодным воздухом арктических (антарктических)   районов земного шара. В ряде районов Северного Ледовитого океана, особенно в устьях больших рек, таких как Енисей, Лена, Обь, в зимнее время года имеются особо благоприятные условия для работы арктических ОТЭС. Средняя многолетняя зимняя (   ноябрь-март) температура воздуха не превышает здесь -26 С. Более теплый, и пресный сток рек прогревает морскую воду подо льдом до 30 С. Арктические океанические тепловые электростанции могут работать по обычной схеме ОТЭС, основанной на закрытом цикле с низкокипящей рабочей жидкостью. В ОТЭС входят: парогенератор для получения пара рабочего вещества за счёт теплообмена с морской водой, турбина для привода электрогенератора, устройства для конденсации отработавшего в турбине пара, а также насосы для подачи морской воды и холодного воздуха. Более перспективна схема арктической ОТЭС с промежуточным теплоносителем, охлаждаемым воздухом в оросительном режиме» (См. Б.М. Берковский, В.А. Кузьминов «Возобновляемые источники энергии на службе человека», Москва, Наука, 1987 г., стр. 63-65.) Такая установка может быть изготовлена уже в настоящее время. В ней могут быть использованы: а) для испарителя – кожухопластинчатый теплообменник APV, тепловой мощностью 7000 кВт. б) для конденсатора – кожухопластинчатый теплообменник APV, тепловой мощностью 6600 кВт или любой другой конденсационный теплообменник, такой же мощности. в) турбогенератор – турбина Юнгстрем на 400 кВт и два встроенных генератора с дисковыми роторами, на постоянных магнитах, общей мощностью 400 кВт. г) насосы – любые, производительностью для теплоносителя – 2000 м3/ч, для рабочего вещества - 65 м3/ч, для охладителя – 850 м3/ч. д) градирня – сборно-разборная 5-6 метров высотой, диаметром 8-10 м. Установка может быть собрана в 20 футовом контейнере и перебрасываться в любое необходимое место, где имеется река с потоком воды более 2500 м3/ч, с температурой воды не менее +30С или большое озеро, из которого можно брать такое количество воды, и холодный воздух температурой ниже –300С. На сборку градирни потребуется всего несколько часов, после чего, если обеспечена подача воды, установка будет работать и выдавать для полезного использования более 325кВт электроэнергии, без какого - либо топлива. Из вышеизложенного видно, что уже в настоящее время можно обеспечить человечество альтернативной электроэнергией, если вкладывать в это средства.

      Есть еще один способ полученияэнергии из океана - электростанции, использующие энергию морских течений. Их называют также «подводными мельницами».

7.1. Вывод:

Свой вывод я хотел бы основывать на лунно-земных связях и хочу рассказать об этих связях.

                                            ЛУННО-ЗЕМНЫЕ СВЯЗИ

     Луна и Солнце вызывают приливы в водной, воз­душной и твердой оболочках Земли. Ярче всего прояв­ляются приливы в Гидросфере, вызванные действием

Луны. В течение лунных суток, измеряемых 24 часами 50 минутами, наблюдается два подъема уровня океана (приливы) и два Опускания (отливы). Размах колеба­ний приливной Волны в литосфере на экваторе дости­гает 50 см, на широте Mocквы - 40 СМ. Атмосферные приливные Явления оказывают существенное влияние на общую циркуляцию атмосферы.

     Солнце также вызывает все виды приливов. Фазы солнечных приливов 24 Часа, но приливообразующая сила Солнца составляет 0,46 Части приливообразующей силы Луны. Следует иметь в виду, что в зависимости от взаимного положения Земли, Луны и Солнца прили­вы, Вызванные одновременным действием Луны и Солн­ца, либо усиливают, либо ослабляют друг друга. Поэтому два раза в течение лунного месяца приливы будут достигать наибольшей и два раза наименьшей величи­ны. Кроме того, Луна обращается вокруг общего с Зем­лей центра тяжести по эллиптической орбите, и поэтому расстояние между центрами Земли и Луны меняется от 57 до 63,7 земных радиуса, вследствие чего приливообразующая сила в течение месяца изменяется на 40 % .

     Геолог Б. Л. Личков, сопоставив графики приливов в океане на Протяжении последнего столетия с графи­ком скорости вращения Земли, пришел к выводу, что, чем выше приливы, тем меньше скорость вращения Земли. Приливная волна, постоянно движущаяся навстречу вращению Земли, замедляет его, и сутки удлиняются на 0,001 секунды за 100 лет. В настоящее время земные сутки равны 24 часам, точнее, Земля совершает вокруг своей оси полный оборот за 23 часа 56 мин. 4 сек., а один миллиард лет назад сутки равнялись 17 часам.

     Б. Л. Личков установил также связь между измене­нием скорости вращения Земли под влиянием прилив­ных волн И изменением климата. Любопытны и другие сопоставления, сделанные этим ученым. Он взял график среднегодовых температур с 1830 по 1939 год и сопоставил его с данными об улове сельди за этот же период. Выяснилось, что температур­ные колебания, обусловленные изменением климата под влиянием лунного и солнечного притяжения, оказывают влияние на количество сельди, иными словами, на ее условия питания и размножения: в теплые годы ее боль­ше, чем в холодные.

     Таким образом, сопоставление графиков позволило сделать вывод о единстве факторов, определяющих ди­намику тропосферы, динамику твердой земной оболоч­ки - литосферы, гидросферы и, наконец, биологических

процессов.

     А. В. Шнитников также указывает, что главнейши­ми факторами, создающими ритмичность в изменении климата, являются приливообразующая сила и солнеч­ная активность. В каждые 40 тыс. лет продолжительность земных суток воз­растает на 1 секунду. Приливообразующая сила характеризуется ритмичностью в 8,9 ; 18,6 ; 111 и 1850 лет, а сол­нечная активность имеет циклы в 11, 22 и 80-90 лет.

     Однако широко известные поверхностные приливные волны в океане не оказывают существенного влияния на климат, зато внутренние приливные волны, затраги­вающие воды Мирового океана на значительных глуби­нах, вносят существенное нарушение в температурный режим и плотность океанических вод. А. В. Шнитников, ссылаясь на В. Ю. Визе и О. Петтерсона, рассказывает о случае, когда в мае 1912 г. между Норвегией и Ислан­дией поверхность нулевой температуры сначала была обнаружена на глубине 450 м, а затем, спустя 16 часов, эту поверхность нулевых температур внутренняя волна подняла до глубины 94 М. Изучение распределения со­лености во время прохождения внутренних приливных волн, в частности поверхности соленостью в 35%, по­казала, что эта поверхность поднималась с глубины 270 м до 170 м.

     Охлаждение поверхностных вод океана в результате действия внутренних волн передается соприкасающим­ся с ней нижним слоям атмосферы, т. е. внутренние вол­ны оказывают воздействие на климат планеты. В част­ности, охлаждение поверхности океана приводит к уве­личению снежности и ледовитости.

     Скопление снегов и льдов в приполярных районах способствует увеличению скорости вращения Земли, по­скольку из Мирового океана изымается большое коли­чество воды и его уровень понижается, При этом сме­щаются в сторону экватора пути циклонов, что приво­дит К большему увлажнению средних широт.

     Таким образом, при скоплении снега и льда в поляр­ных районах и при обратном переходе из твердой фазы в жидкую возникают условия для периодических пере­распределений водной массы относительно полюсов и экватора, что в конечном счете приводит к изменению суточной скорости вращения Земли.

     Тесная связь приливообразующей силы и солнечной активности с биологическими явлениями позволила А. В. Шнитникову выяснить причины ритмичности в ми­грации границ географических зон по следующей цепи: приливообразующая сила, внутренние волны, темпера­турный режим океана, ледовитость Арктики, атмосфер­ная циркуляция, увлажненность и температурный ре­жим материков (сток рек, уровень озер, увлажненность торфяников, подземные воды, горные ледники, вечная

мерзлота) .

     Т. Д. и С. д. Резниченко пришли к выводу, что:

.1) гидросфера трансформирует энергию гравитацион­ных сил в механическую, замедляет вращение Земли;

2) влага, перемещаясь к полюсам или к экватору, тран­сформирует тепловую энергию Солнца в механическую энергию суточного вращения и придает этому вращению колебательный характер.

      Кроме того, по литературным данным они проследи­ли историю развития 13 водоемов и 22 рек Евразии за последние 4,5 тыс. лет и установили, что за этот отрезок времени гидросеть подвергалась ритмичной миграции. При похолодании скорость суточного вращения Земли возрастала и гидросеть испытывала смещение в сторо­ну экватора. При потеплении суточное вращение Земли замедлялось и гидросеть испытывала смещение в сто­рону полюс

Использованнаялитература:

1. Большая Советская энциклопедия.

2. Детская энциклопедия.

3. Б. А. Воронцов - Вельяминов. Очерки о Вселенной. М., “Наука”, 1975 г.

4. Болдуин Р. Что мы знаем о Луне. М., “Мир”, 1967 г.

5. Уиппл Ф. Земля, Луна и планеты. М., “Наука”, 1967 г.

6. Космическая биология и медицина. М., “Наука”, 1994 г.

7. Усачев И.Н. Приливные электростанции. - М.: Энергия, 2002. Усачев И.Н. Экономическая оценка приливных электростанций с учетом экологического эффекта// Труды XXI Конгресса СИГБ. - Монреаль, Канада, 16-20 июня 2003.
Велихов Е.П., Галустов К.З., Усачев И.Н., Кучеров Ю.Н., Бритвин С.О., Кузнецов И.В., Семенов И.В., Кондрашов Ю.В. Способ возведения крупноблочного сооружения в прибрежной зоне водоема и плавкомплекс для осуществления способа. - Патент РФ № 2195531, гос. рег. 27.12.2002
Усачев И.Н., Прудовский А.М., Историк Б.Л., Шполянский Ю.Б. Применение ортогональной турбины на приливных электростанциях// Гидротехническое строительство. – 1998. – № 12.
Раве Р., Бьеррегорд Х., Милаж К. Проект достижения выработки 10% мирового электричества с помощью энергии ветра к 2020 г. // Труды форума FED, 1999.
Атласы ветрового и солнечного климатов России. - СПб: Главная геофизическая обсерватория им. А.И. Воейкова, 1997.