Закономерность распределения простых чисел в ряду натуральных чисел

ПримечаниеПЧ можно представить комбинацией арифметических прогрессий. Таких комбинаций бесконечное множество. Но каждая из комбинаций систем арифметических прогрессий позволяет только единственное представление ПЧ при заданной разности прогрессий задающий ряды
Загрузить архив:
Файл: ref-28291.zip (137kb [zip], Скачиваний: 214) скачать

IX математический симпозиум.

Закономерность распределения простых чисел в ряду натуральных чисел.

г. Волжский.

05-11 октября 2008 года.

Белотелов В.А.

Нижегородская обл.

г. Заволжье

vbelotelov@mail.ru

http://www.sciteclibrary.ru/rus/catalog/pages/9273.html
Простые числа? – Это просто!?

Узнав о важной роли простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании и о том, что нужна закономерность распределения ПЧ в ряду натуральных чисел, не являясь математиком, всё же рискнул заняться решением этой задачи. Результат ниже.

         Для начала выписал ряд ПЧ. Конечно же, это было сделано с целью заметить, хоть какую бы, закономерность. С этой же целью были вычислены разности между соседними числами ряда ПЧ. Было замечено, что иногда появлялась последовательность разностей 6-4-2-4-2-4-6-2. Там, где эта последовательность нарушалась, были введены составныё числа (СЧ). Результат представлен в таблице 1, СЧ в которой подчёркнуты. Числа 2, 3, 5, являясь ПЧ, из рассмотрения всё же были убраны. Это первое исключение из правил. Вторая вольность заключалась введением в рассмотрение числа 1, зная, что единица не является простым числом.

         Целью же было найти закономерность среди ПЧ + СЧ, а потом уже найти закономерность среди ПЧ. Стратегия поиска закономерности ПЧ заключалась в следующей логической формуле:

(закономерность ПЧ+СЧ) – (закономерность СЧ) = закономерность ПЧ.

         Из ПЧ + СЧ, представленных в таблице 1, была составлена система из восьми арифметических прогрессий. Результат представлен в таблице 2.

         Разности всех восьми прогрессий равны 30 и их первые члены равны соответственно 1, 7, 11, 13, 17, 19, 23, 29, а сами ряды обозначены через R1, R7,R11, R13, R17, R19, R23, R29. СЧ, как и в таблице 1, подчёркнуты и сверху расписаны в виде произведений двух чисел. Можно сформулировать правило, по которому в любой из восьми арифметических прогрессий распределены СЧ.

         Если в арифметической прогрессии, какой – либо член an можно представить в виде двух сомножителей fxp, топоследующие члены этой прогрессии an+mf являются произведением fx(p+md), ачлены an+kp произведением px(f+kd), гдеmиkлюбые натуральные

числа, а d – разность этой прогрессии.

Данное правило не нуждается в доказательстве, т.к. фактически следует из определения арифметической прогрессии. Но для обеспечения закономерности ПЧ имеет большое значение. Во - первых, оно запрещает поиск рядов ПЧ, подчиняющихся одной арифметической прогрессии, т.к. любое простое число an можно представить в виде anх1, и тогда в любом ряде через число членов an, появляетсясоставное число anх(1+d).

Во –вторых, в любой арифметической прогрессии появление дополнительных составных чисел возможно только в сочетании с разностью именно этой прогрессии.

         Это правило можно сформулировать для любого числа сомножителей, но в данном случае интерес представляет число сомножителей равное двум.

         В качестве примера рассмотрим в ряде R1 четвёртый член равный 91=7х13. Ближайшим членом в ряде R1 кратным семи является число 301, отстоящее от числа 91 на семь номеров, соответственно, число 301 принадлежит ряду СЧ. Число 301 является произведением 7х43 (301=7х43), и с номера этого числа равного 11, каждое сорок третье число, тоже делится на 43 и, соответственно, принадлежит к ряду СЧ. Дальше это можно не описывать, т.к. это хорошо видно в таблице 2.

         Расписав таблицу 2 в виде математических символов, удалось получить систему из восьми формул, расписанных в виде разности сумм, см. таблицу 3. Во всех восьми формулах системы, члены с рядами двойных сумм служат фильтрами, удаляющими СЧ из ряда ПЧ+СЧ, и задают работу фильтров в виде матриц.

         В таблице 4 изображено распределение номеров СЧ в ряде R1, определяемых вторым членом формулы. Это матрица, в которой и по столбцам и по строкам арифметические прогрессии.

         В формулах индексы и обозначают столбцы и строки подобных матриц, сами же и дополнительными индексами не отягощаю. Без и описать работу матриц не смог, а формальная фраза, что в выраженииa1 и с1, будет неверна. Ибо все члены с номерами при

Система формул арифметических прогрессий, позволяющая вычислять ПЧ, получилась достаточно громоздкой, но закономерность обозначена.

Данная статья была подготовлена для публикации в научном журнале с математическим уклоном. Пока шёл поиск данного журнала, путём несложных умозаключений, была составлена система рядов арифметических прогрессий с разностью 10. Результат в таблице 5 и 6. Всё было расписано по образцу и подобию предыдущего материала. В таблице 7 изображена матрица для номеров второго члена формулы 1 таблицы 6.

         Не начав переписывать статью заново, в связи с открытием новой системы уравнений, опять же путём размышлений, были расписаны арифметические прогрессии с разностью 2 и 1, т.е. при разности единица ПЧ были напрямую увязаны с натуральным рядом. Результат в таблице 8 и 9.

Всё расписано, как и в случаях с системой уравнений арифметических прогрессий разностей 30 и 10. И после этого наступил момент истины.

Оказалось, что подобных уравнений можно составить бесконечное множество. Навскидку – это арифметические прогрессии с разностью 1, 2, 4, 6, 10, 12, 18, 20, 30, 36, 60, и т.д. Даже в перечисленном до разности 60 указаны не все.

Обобщающий вывод:

ПЧ можно представить комбинацией арифметических прогрессий. Таких комбинаций бесконечное множество. Но каждая из комбинаций систем арифметических прогрессий позволяет только единственное представление ПЧ при заданной разности прогрессий задающий ряды ПЧ+СЧ.