Благородные металлы на службе у человека

Загрузить архив:
Файл: ref-11568.zip (20kb [zip], Скачиваний: 147) скачать

Министерство общего и профессионального образования Российской Федерации.

ОмГТУ

Кафедра оборудования и технологии сварочного производства.

Курсовая работа.

По курсу «В мире металлов».

На тему: «Благородные металлы на службе у человека».

Выполнил:

Студент МСФ С-110

Проверил:

Доцент к.т.н.

Шестель Л.А.

г. Омск, 2001

Введение. PAGEREF _Toc514342419 h 2

Благородные металлы.. PAGEREF _Toc514342422 h 4

Золото. PAGEREF _Toc514342423 h 5

Серебро. PAGEREF _Toc514342424 h 8

Родий, палладий, осмий, иридий, рутений. PAGEREF _Toc514342425 h 11

Список литературы.. PAGEREF _Toc514342426 h 13

Благородные металлы

          Очень долгое время, почти до конца XVIII в., считалось, что существует всего 7 металлов: золото, серебро, ртуть, медь, железо, олово, свинец. Золото и серебро, не изменяющиеся при действии воздуха, влаги и высокой температуры, получили название совершенных, благородных металлов. Прочие же металлы, которые под действием воды и воздуха теряют металлический блеск, покрываясь налетом, а после прокаливания превращаются в рыхлые, порошкообразные «земли» или «окалины» (оксиды), были названы несовершенными, неблагородными.

          Такое деление металлов нередко применяется и в наши дни, но с тем отличием, что к двум благородным металлам древнего мира и средневековья - золоту и серебру - на рубеже XVIII и XIX вв. прибавились платина и четыре ее спутника: родий, палладий, осмий, иридий. Рутений, пятый спутник платины, был открыт только в 1844 г.

          Благородные металлы очень мало распространены в природе. В природе благородные металлы встречаются почти всегда в свободном (самородном) состоянии. Некоторое исключение составляет серебро, которое находится в природе и в виде самородков, и в виде соединений, имеющих значение как рудные минералы (серебряный блеск, или аргентит Ag2S, роговое серебро, или кераргирит AgCl, и др.) [3]

          В нашей стране установлены пробы: 375, 500, 583, 750, 958 для золота и 800, 785, 916 для серебра. В Англии, США, Швейцарии и некоторых других странах проба выражается в условных единицах - каратах. Проба чистого металла принята за 24 карата (проба 1000). Золото 18 каратов - то же самое, что золото 750-й пробы, и т.д. Золотая монета в России и во многих других странах чеканилась из золота 900-й пробы, серебряная из серебра 900-й и 500-й пробы. В настоящее время чеканка монеты из сплавов благородных металлов не производится. Однако благородные металлы, их сплавы и химические соединения получают все возрастающее применение в технике. [2]

Золото

          Золото встречается в природе почти исключительно в самородном состоянии, главным образом в виде мелких зёрен, вкраплённых в кварц или содержащихся в кварцевом песке. В небольших количествах золото встречается в сульфидных рудах железа, свинца и меди. Следы его открыты в морской воде. Общее содержание золота в земной коре составляет около 5*10-7 вес. %. Крупные месторождения золота находятся в Южной Африке, на Аляске, в Канаде и Австралии. [1]

          Золото отделяется от песка и измельченной кварцевой породы промыванием водой, которая уносит частицы песка, как более лёгкие, или обработкой песка жидкостями, растворяющими золото. Чаще всего применяется раствор цианида натрия (NaCN), в котором золото растворяется в присутствии кислорода с образованием компелексных анионов [Au(CN)2]:

4Au + 8NaCN + O2 + 2H20 —> 4Na[Au(CN)2] + 4NaOH

          Из полученного раствора золото выделяют цинком:

2Na[Au(CN)2] + Zn —> Na2[Zn(CN)4] + 2Au

          Освобождённое золото обрабатывают для отделения от него цинка разбавленной серной кислотой, промывают и высушивают. Дальнейшая очистка золота от примесей (главным образом от серебра) производится обработкой его горячей концентрированной серной кислотой или путём электролиза.

          Метод извлечения золота из руд с помощью растворов цианидов калия или натрия был разработан в 1843 году русским инженером П.Р. Багратионом. Этот метод, принадлежащий к гидрометаллургическим способам получения металлов, в настоящее время наиболее распространён в металлургии золота. [2]

          Ввиду мягкости золото употребляется в сплавах, обычно с серебром или медью. Эти сплавы применяются для электрических контактов, для зубопротезирования и в ювелирном деле.

          В химическом отношении золото — малоактивный металл. На воздухе оно не изменяется даже при сильном нагревании. Кислоты в отдельности не действуют на золото, но в смеси соляной и азотной кислот (царской водке) золото легко растворяется:

Au + HNO3 + 3HCl —> AuCl3 + NO­ + 2H2O

          Так же легко растворяется золото в хлорной воде и в аэрируемых (продуваемых воздухом) растворах цианидов щелочным металлов. Ртуть тоже растворяет золото, образуя амальгаму, которая при содержании более 15% золота становится твёрдой.

          Известны два ряда соединений золота, отвечающие степеням окислённости +1 и +3. Так, золото образует два оксида — оксид золота(I), или закись золота, - Au2O - и оксид золота(III), или окись золота - Au2O3. Более устойчивы соединения, в которых золото имеет степень окисления +3.

          Все соединения золота легко разлагаются при нагревании с выделением металлического золота.

          И в древности, и в средние века основными областями применения золота и серебра были ювелирное дело и изготовление монет. При этом недобросовестные люди, как ремесленники, так и лица, стоявшие у власти, прибегали к обману, не гнушались сплавлением драгоценных металлов с более дешевыми - золота с серебром или медью, серебра с медью. А применение золота для зубопротезирования известно еще древним египтянам. Применение золота в стекольной промышленности известно с конца XVII в. [1]

          Сплавы золота с платиной, очень стойкие против химических воздействий, используют для изготовления химической аппаратуры. Соединения золота применяют также в медицине и в фотографии.

          Золотую фольгу, а позднее гальванопокрытия золотом широко применяли для золочения куполов церковных храмов. Лишь последние 40 – 45 лет можно отнести к периоду чисто технического применения золота. Золото обладает уникальным комплексом свойств, которого не имеет ни какой другой металл. Оно обладает самой высокой стойкостью к воздействию агрессивных сред, по электро – и теплопроводности уступает лишь серебру и меди, ядро золота имеет большое сечение захвата нейтронов, способность золота к отражению инфракрасных лучей близка к 100%, в сплавах оно обладает каталитическими свойствами. Золото очень технологично, из него легко изготавливают сверхтонкую фольгу и микронную проволоку. Покрытия золотом легко наносят на металлы и керамику. Золото хорошо паяется и сваривается под давлением. Такая совокупность полезных свойств послужила причиной широкого использования золота в важнейших современных отраслях техники: электронике, технике связи, космической и авиационной технике, химии. [1]

          Следует отметить, что в электронике на 90% золото используют в виде покрытий. Электроника и связанные с ней отрасли машиностроения являются основными потребителями золота в технике. В этой области золото широко используют для соединения интегральных схем сваркой давлением или ультразвуковой сваркой, контактов штепсельных разъемов, в качестве тонких проволочных проводников, для пайки элементов транзисторов и других целей. В последнем случае особенно важно то, что золото образует легкоплавкие эвтектики с индием, галлием, кремнием и другими элементами, которые обладают проводимостью определенного типа. Помимо технологических усовершенствований в электронике, для ряда деталей и узлов вместо золота стали использовать палладий, покрытия оловом, сплавами олова со свинцом и сплавом 65% Sn + 35% Ni с золотым подслоем. Сплав олова с никелем обладает высокой износостойкостью, коррозионной стойкостью, приемлемой величиной контактного сопротивления и электропроводностью. Несмотря на то что в настоящее время расход золота в электронике непрерывно возрастает, считается, что он мог быть на 30% выше, если бы не меры, направленные на экономию золота.

          В микроэлектронике широко применяют пасты на основе на основе золота с различным электросопротивлением. Широкое использование золота и его сплавов для контактов слаботочной аппаратуры обусловлено его высокими электрическими и коррозионными свойствами. Серебро, платина и их сплавы при использовании в качестве контактов, коммутирующих микротоки при микронапряжениях, дают гораздо худшие результаты. Серебро быстро тускнеет в атмосфере, загрязненной сероводородом, а платина полимеризует органические соединения. Золото свободно от этих недостатков, и контакты из его сплавов обеспечивают высокую надежность и длительный срок службы. Золотые припои с низким давлением пара используют для пайки вакуумноплотных швов деталей электронных ламп, а также для пайки узлов в аэрокосмической промышленности.

          В измерительной технике для контроля температуры и особенно для измерений низких температур используют сплавы золота с кобальтом или хромом. В химической промышленности золото главным образом используют для плакирования стальных труб, предназначенных для транспортировки агрессивных веществ.

          Золотые сплавы применяют в производстве часовых корпусов и перьев для авторучек. В медицине используют не только зубопротезные золотые сплавы, но и медицинские препараты, содержащие соли золота, для различных целей, например при лечении туберкулеза. Радиоактивное золото используют при лечении злокачественных опухолей. В научных исследованиях золото используют для захвата медленных нейтронов. С помощью радиоактивных изотопов золота изучают диффузионные процессы в металлах и сплавах.

          Золото применяют для металлизации оконных стекол зданий. В жаркие летние месяцы через оконные стекла зданий проходит значительное количество инфракрасного излучения. В этих обстоятельствах тонкая пленка (0.13 мкм) отражает инфракрасное излучение и в помещении становится значительно прохладнее. Если через такое стекло пропустить ток, то оно обретет противотуманные свойства. Покрытые золотом смотровые стекла судов, электровозов и т.д. эффективны в любое время года. [1]

Серебро

          Чистое серебро - очень мягкий, тягучий металл. Оно лучше всех металлов проводит электрический ток и тепло.

          В качестве примеси серебро встречается почти во всех медных и серебряных рудах. Из этих руд и получают около 80% всего добываемого серебра.

          Серебро распространено в природе значительно меньше, чем медь (около 10-5 вес. %). В некоторых местах (например, в Канаде) серебро находится в самородном состоянии, но большую часть серебра получают из его соединений. Самой важной серебряной рудой является серебряный блеск (аpгент) - Ag2S.

          Из серебра можно вытянуть проволоку длиной 100 м, масса которой всего 0,045 г; масса золотой проволоки той же длины - 0,04 г. Серебро можно проковать в тончайшие листки (до 0,4 мкм), просвечивающие синевато-зеленым или зеленым цветом. На практике чистое серебро вследствие мягкости почти не применяется: обычно его сплавляют с большим или меньшим количеством меди. Сплавы серебра служат для изготовления ювелирных и бытовых изделий, монет, лабораторной посуды. Серебро используется для покрытия им других металлов, а также радиодеталей в целях повышениях электоpопpоводимости и устойчивости к коррозии. Часть добываемого серебра расходуется на изготовление сеpебpяноцинковых аккумулятоpов.

          Серебро — малоактивный металл. В атмосфере воздуха оно не окисляется ни пpи комнатных температурах, ни при нагревании. Часто наблюдаемое почеpнение серебряных предметов — результат образования на их повеpхности чёрного сульфида серебра - AgS2. Это пpоисходит под влиянием содержащегося в воздухе сеpоводоpода, а также при сопpикосновении сеpебpяных пpедметов с пи-щевыми пpодуктами, содеpжащими соединения сеpы.

4Ag + 2H2S + O2 —> 2Ag2S +2H2O

          В pяду напpяжения сеpебpо pасположено значительно дальше водоpода. Поэтому соляная и pазбавленная сеpная кислоты на него не действуют. Раствоpяют серебpо обычно в азотной кислоте, котоpая взаимодействует с ним согласно уpавнению:

Ag + 2HNO3 —> AgNO3 + NO2­+ H2O

          Сеpебpо обpазует один pяд солей, pаствоpы котоpых содеpжат бесцветные катионы Ag+.

          Пpи действии щелочей на pаствоpы солей сеpебpа можно ожидать получения AgOH, но вместо него выпадает буpый осадок оксида сеpебpа(I):

2AgNO3 + 2NaOH —> Ag2O + 2NaNO3 + H2O

          Кpоме оксида сеpебpа(I) известны оксиды AgO и Ag2O3.

          Hитpат сеpебpа (ляпис) - AgNO3 - обpазует бесцветные пpозpачные кpисталлы, хоpошо pас-твоpимые в воде. Пpименяется в пpоизводстве фотоматеpиалов, пpи изготовлении зеpкал, в гальва-нотехнике, в медицине.

          Подобно меди, сеpебpо обладает склонностью к обpазованию комплексных соединений.

          Многие неpаствоpимые в воде соединения сеpебpа (напpимеp: оксид сеpебpа(I) — Ag2O и хлоpид сеpебpа — AgCl), легко pаствоpяются в водном pаствоpе аммиака.

          Комплексные цианистые соединения сеpебpа пpименяются для гальванического сеpебpения, так как пpи электpолизе pаствоpов этих солей на повеpхности изделий осаждается плотный слой мелкокpисталлического сеpебpа. [2]

          Все соединения сеpебpа легко восстанавливаются с выделением металлического сеpебpа. Если к аммиачному pаствоpу оксида сеpебpа(I), находящемуся в стеклянной посуде, пpибавить в качестве восстановителя немного глюкозы или фоpмалина, то металлическое сеpебpо выделяется в виде плотного блестящего зеpкального слоя на повеpхности стекла. Этим способом готовят зеpкала, а также сеpебpят внутpеннюю повеpхность стекла в сосудах для уменьшения потеpи тепла лучеиспусканием.

          Соли сеpебpа, особенно хлоpид и бpомид, ввиду их способности pазлагаться под влиянием света с выделением металлического сеpебpа, шиpоко используются для изготовления фотоматеpиалов плёнки, бумаги, пластинок. Фотоматеpиалы обычно пpедставляют собою светочувствительную суспензию AgBr в желатине, слой котоpой нанесён на целлулоид, бумагу или стекло.

          Пpи экспозиции в тех местах светочувствительного слоя, где на него попал свет, обpазуются мельчайшие заpодыши кpисталлов металлического сеpебpа. Это — скpытое изобpажение фотогpафиpуемого пpедмета. Пpи пpоявлении бpомид сеpебpа pазлагается, пpичём скоpость pазложения тем больше, чем выше концентpация заpодышей в данном месте слоя. Получается видимое изобpажение, котоpое является обpащённым или негативным изобpаажением, поскольку степень почеpнения в каж-дом месте светочувствительного слоя тем больше, чем выше была его освещённость пpи экспозиции. В ходе закpепления (фиксиpования) из светочувствительного слоя удаляется неpазложившийся бpоми сеpебpа. Это пpоисходит в pезультате взаимодействия между AgBr и веществом закpепителя - тиосульфатом натpия. Пpи этой pеакции получается неpаствоpимая комплексная соль:

AgBr + 2Na2S2O3 —> Na3[Ag(S2O3)2] + NaBr

          Далее негатив накладывают на фотобумагу и подвергают действию света — "печатают". Пpи этом наиболее освещёнными оказываются те места фотобумаги, котоpые находятся пpотив светлых мест негатива, Поэтому в ходе печатания соотношения между светом и тенью меняется на обpатное и ста-новится отвечающим сфотогpафиpованному объекту. Это — позитивное изобpажение. [2]

          Ионы сеpебpа подавляют pазвитие бактеpий и уже в очень низкой концентpации (около 10-10 г-ион/л) стерилизуют питьевую воду. В медицине для дезинфекции слизистых оболочек пpименяются стабилизиpованные специальными добавками коллоидные pаствоpы сеpебpа (пpотаpгол, коллаpгол и дp.).

          В течение нескольких столетий при изготовлении зеркал поверхность стекла покрывали амальгамой олова - сплавом ртути с оловом. Эта работа вследствие ядовитости ртутных паров была крайне вредной для здоровья. В 1856 г. знаменитый немецкий химик Ю. Либих нашел способ покрытия стекла тончайшим слоем серебра. Сущность способа состоит в восстановлении серебра из аммиачного раствора его солей глюкозой. На поверхности стекла оседает тонкий прочный налет серебра, заменяющий амальгаму. Этот быстрый, безвредный и недорогой способ окончательно вытеснил прежний только в начале XX в.

          Серебро является наилучшим проводником электричества. Его удельное сопротивление при 20° равно 0,016 Ом*мм/м (оно равно 0,017 для меди, 0,024 для золота и 0,028 для алюминия). Интересно, что во время второй мировой войны Государственное казначейство США выдало «Манхэттенскому проекту» 14 т серебра для использования как проводника в работах по созданию атомной бомбы. Вследствие хорошей электрической проводимости и стойкости против действия кислорода при высоких температурах серебро применяется как важный в электротехнике материал.

          Благодаря стойкости серебра против едких щелочей, уксусной кислоты и других веществ из него изготовляют аппаратуру для химических заводов, а также лабораторную посуду. Оно служит катализатором в некоторых производствах (например, окисления спиртов в альдегиды). Сплавы на основе серебра применяют также для изготовления ювелирных изделий, зубных протезов, подшипников и др. Соли серебра используют в медицине и фотографии. Не так давно иодид серебра AgI в виде аэрозоля получил применение для искусственного вызывания дождя. Мельчайшие кристаллики иодида серебра, введенные в облако, служат центрами, на которых происходит конденсация водяного пара и слияние мельчайших капелек воды в крупные дождевые капли. [1]

Родий, палладий, осмий, иридий, рутений

          В 1824 г. на Урале было добыто 33 кг самородной платины, а в 1825 г. уже 181 кг. Незадолго перед этим (в 1823 г.) был уволен в отставку министр финансов Д.А. Гурьев, приведший Россию на грань денежной катастрофы. Его преемник Е.Ф.Канкрин, чтобы спасти положение, наметил в числе прочих мер чеканку платиновой монеты. В 1826 г. горные инженеры П.Г. Соболевский и В.В. Любарский разработали технологию получения ковкой платины.

          Способ этот состоял в следующем: губчатую платину, полученную прокаливанием «нашатырной платины», т.е. гексахлорплатината аммония, набитую в цилиндрические железные формы, сильно сдавливали винтовым прессом и полученные цилиндры выдерживали при температуре белого каления около 36 ч, после чего из них отковывали полосы или прутки. К концу 1826 г. этим способом было получено 1590 кг ковкой платины. Ранее по способу парижского ювелира Жаннетти платину сплавляли с мышьяком. Сильным прокаливанием на воздухе мышьяк выжигали из полученных слитков, после чего их подвергали горячей ковке. Этот способ был крайне опасен для здоровья и сопряжен с большими потерями платины. За рубежом его заменил способ У. Уолластона, который хранился в тайне и был опубликован только в 1829 г. В основных чертах он схож со способом П.Г. Соболевского. Получение изделий посредством прессования и последующего спекания порошков металлов, карбидов и других соединений широко применяется под названием металлокерамики или порошковой металлургии. [2]

          Практические применения платиновых металлов обширны и разнообразны. Они используются в промышленности, приборостроении, зубоврачевании и ювелирном деле. Платиновые металлы, а также их сплавы катализируют многие химические реакции, например окисление SO2 в SO3. Однако в настоящее время эти катализаторы заменяют другими веществами, более дешевыми.

          Стойкость против воздействия кислорода даже при высоких температурах, кислото- и жароупорность делают платину, родий, иридий ценными материалами для лабораторной и заводской химической аппаратуры. Тигли из радия, иридия применяют для работ со фтором и его соединениями или для работ при очень высокой температуре. Общая масса платиновых лодочек на одном из заводов, изготовляющих стеклянное волокно, составляет несколько сот килограммов. Из сплава 90% Pt + 10% Ir изготовлены международные эталоны метра и килограмма. В частях приборов, где требуется большая твердость и стойкость против износа, используют природный осмистый иридий. Очень светлый и не темнеющий со временем сплав 80% Pd + 20% Ag применяют для изготовления шкал астрономических и навигационных приборов.

          По способности отражать свет родий лишь немного уступает серебру. Он не тускнеет со временем, поэтому зеркальные поверхности астрономических приборов предпочитают покрывать родием. Для измерения температур до 1600°С служат термопары из тонких проволок - из платины и из сплава 90% Pt+10% Rh. Более высокие температуры (до 2000°С) можно измерять термопарой из иридия и сплава 60% Rh + 40% Ir. [1]

          Один из сильнейших ядов не имеющий запаха, - оксид углерода (II) СО - легко обнаружить, если внести в газовую смесь полоску фильтровальной бумаги, смоченную раствором хлорида палладия:

PdCl2 + CO + H2O = CO2 + 2HCl + Pd

Вследствие выделения мелкораздробленного палладия бумага чернеет. [2]

          Сплавы платины и палладия, которые не темнеют со временем и не имеют привкуса, применяют в стоматологии. На научные и промышленные цели идет около 90% всех платиновых металлов, остальное - на ювелирное производство.

          Орден "Победа" и орден Суворова 1-й степени изготовляют из платины.

Список литературы

1. - Венецкий С.И., Рассказы о металлах. М.: Металлургия, 1986.

2. - Энциклопедический словарь юного химика. М.: 1990.

3. - Погодин А., Благородные металлы. М.: Знание, 1979