Конспект урока по теме Дифференциал функции


Понятие и геометрический смысл дифференциала.
Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.
Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).
Это записывается так:

или

или же


Геометрический смысл дифференциала. Дифференциал функции y = f(x) равен приращению ординаты касательной S, проведённой к графику этой функции в точке M(x; y), при изменении x (аргумента) на величину  (см. рисунок).
Почему дифференциал можно использовать в приближенных вычислениях?
Дифференциал,  является главной, линейной относительно частью приращения функции; чем меньше , тем большую долю приращения составляет эта часть. В этом можно убедиться, мысленно передвигая перпендикуляр, опущенный из точки P (см. рисунок) к оси Ox, ближе к началу координат. Поэтому при малых значениях (и при ) приращение функции можно приближенно заменить его главной частью , т.е.
               
О разных формах записи дифференциалаДифференциал функции в точке x и обозначают

или

Следовательно,
                   (1)
или
,            (2)
поскольку дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной.
Замечание. Нужно помнить, что если x – исходное значение аргумента, а  - наращенное значение, то производная в выражении дифференциала берётся в исходной точке x ; в формуле (1) этого не видно из записи.
Дифференциал функции можно записать в другой форме:
                      (3)или
   (4)

Пример 1. Найти дифференциалы функций:
1) ;
2) ;
3) ;
4) .
Решение. Применяя формулы дифференцироивания степенной и логарифмической функций из таблицы производных, а также формулу (4), находим:
1) ;
2) ;
3) ;
4) .
В основном же задачи на дифференциалы - это более сложные, чем рассмотренные выше для разминки, поэтому стоит посетить страницу с решением задач на дифференциалы сложных функций. Скорее всего, вызывающие у вас трудности задачи именно к таким и относятся.
А, поскольку дифференциал - это почти то же самое, что производная, то проверить решение именно Вашей задачи можно на калькуляторе производных.

Свойства дифференциалаВ этом и следующем параграфах каждую из функций будем считать дифференцируемой при всех рассматриваемых значениях её аргументов.
Дифференциал обладает свойствами, аналогичными свойствам производной:
 (С – постоянная величина)  (5)
                                (6)                             (7)
                                      (8)
                            (9)
Формулы (5) – (9) получаются из соответствующих формул для производной умножением обеих частей каждого равенства на .
Одно из особеннейших свойств дифференциала - инвариантность формы дифференциала в случае сложных функций.
Нет времени вникать в решение? Можно заказать работу!К началу страницыПройти тест по теме Производная, дифференциал и их применение
Применение дифференциала в приближенных вычисленияхУстановленное во втором параграфе приближенное равенство

или                            (10)
позволяет использовать дифференциал для приближенных вычислений значений функции.
Запишем приближенное равенство более подробно. Так как

а

то

или
                  (11)

Пример 2. Пользуясь понятием дифференциала, вычислить приближенно ln 1,01.
Решение. Число ln 1,01 является одним из значений функции y = ln x . Формула (11) в данном случае примет вид

Положим

тогда

Следовательно,

что является очень хорошим приближением: табличное значение ln 1,01 = 0,0100.
Пример 3. Пользуясь понятием дифференциала, вычислить приближенно

Решение. Числоявляется одним из значений функции

Так как производная этой функции

то формула (11) примет вид

Полагая

и

получаем

(табличное значение).

Абсолютная и относительная погрешности приближенных вычисленийПользуясь приближенным значением числа, нужно иметь возможность судить о степени его точности. С этой целью вычисляют его абсолютную и относительную погрешности.
Абсолютная погрешность приближенного числа равна абсолютной величине разности между точным числом и его приближенным значением:
                            (12)
Относительной погрешностью приближенного числа называется отношение абсолютной погрешности этого числа к абсолютной величине соответствующего точного числа:
                                 (13)
Если точное число неизвестно, то
                             (14)
Иногда, прежде чем применить формулу (11), требуется предварительно преобразовать исходную величину. Как правило, это делается в двух целях. Во-первых, надо добиться, чтобы величина была достаточно малой по сравнению с , так как чем меньше , тем точнее результат приближенного вычисления. Во-вторых, желательно, чтобы величина вычислялась просто.

Пример 4. Пользуясь понятием дифференциала, вычислить приближенно . Оценить точность полученного результата.
Решение. Рассмотрим функцию

Её производная равна

а формула (11) примет вид

В данном случае было бы нерационально вычислять приближенно следующим образом:

так как значение

не является малым по сравнению со значением производной в точке

Здесь удобно предварительно вынести из под корня некоторое число, например 4/3.  Тогда

Теперь, полагая

получим

Умножая на 4/3, находим

Принимая табличное значение корня

за точное число, оценим по формулам (12) и (13) абсолютную и относительную погрешности приближенного значения: