Исследовательская работа по физике Атомная энергетика: плюсы и минусы


Муниципальное казённое общеобразовательное учреждение
Климщинская средняя школа
Атомная энергетика: плюсы и минусы
исследовательская работа по физике
Автор: Серков Вадим,
обучающийся 10 класса
Руководитель: Голубцова Ирина
Викторовна, учитель физики
Климщина
2016
Оглавление
I.Введение.........................................................................................................3
II.Основная часть
Атомная энергетика……………………………………………………4
1.1.Получение атомной энергии………………………………………4
1.2. История развития атомной энергетики…………………………..7
1.3.Экономическое значение энергетики……………………………10
1.4. Объёмы производства атомной электроэнергии . ………..……12
1.5.Плюсы атомной энергетики……………………………………...14
1.6.Минусы атомной энергетики…………………………………….15
2.Результаты социологического опроса…………………………………19
III.Заключение……………………………………………………………..22
IV.Список использованной литературы………………………………….24
Введение
26 апреля исполняется 30 лет со дня катастрофы на Чернобыльской АЭС.
В небо взлетело и рассеялось огромное количество радиоактивных веществ. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. По подсчетам Российской академии наук, чернобыльская катастрофа обернулась гибелью 60 тысяч человек в России и 140 тысяч в Беларуси и Украине.30 лет – большой срок для человека, но не для человечества. Эта трагедия заставила людей задуматься: «Атомная энергия-это добро или зло?»
Я тоже попытался найти ответ на этот вопрос, чтобы в дальнейшем помочь разобраться в нём моим сверстникам.
Цель исследования: выявить отношение людей к атомной энергетике.
Задачи:
-изучение процессов получения атомной энергии
-изучение истории развития атомной энергетики
-изучение значения атомной энергетики
-выявление проблем атомной энергетики
-разработка диагностического материала по проблеме исследования
-проведение соц.опроса среди людей разного возраста
-анализ результатов соц.опроса
Предмет исследования: отношение человека к вопросам атомной энергетики

1.Атомная энергетика
1.1.Получение атомной энергии
Атомная энергетика (ядерная энергетика) — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.
Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер плутония-239 или урана-235. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.
Топливный цикл
Атомная энергетика основана на использовании ядерного топлива, совокупность промышленных процессов которого составляют топливный ядерный цикл. Хотя существуют различные типы топливных циклов, зависящие как от типа реактора, так и от характеристик конечной стадия цикла, в целом у него существуют общие этапы.
Добыча урановой руды.
Измельчение урановой руды
Отделение диоксида урана, т. н. жёлтого хека, от отходов, тоже радиоактивных, идущих в отвал.
Преобразование диоксида урана в газообразный гексафторид урана.
Обогащение урана — процесс повышения концентрации урана-235, производится на специальных заводах по разделению изотопов.
Обратное превращение гексафторида урана в диоксид урана в виде топливных таблеток.
Изготовление из таблеток тепловыделяющих элементов (сокр. твэл), которые в скомпанованном виде вводятся в активную зону ядерного реактора АЭС.
Извлечение отработанного топлива.
Охлаждение отработанного топлива.
Захоронение отработанного топлива в специальном хранилище.
В ходе эксплуатации в процессах технического обслуживания удаляются образующиеся низкорадиоактивные отходы. С окончанием срока службы производится вывод из эксплуатации самого реактора, демонтаж сопровождается дезактивацией и удалением в отходы деталей реактора.
Ядерный реактор
Ядерный реактор — устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления, которая всегда сопровождается выделением энергии.
Первый ядерный реактор построен и запущен в декабре 1942 года в США под руководством Э. Ферми. Первым реактором, построенным за пределами США, стал ZEEP, запущенный в Канаде 5 сентября 1945 года. В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова. К 1978 году в мире работало уже около сотни ядерных реакторов различных типов.
Существуют разные типы реакторов, основные отличия в них обусловлены используемым топливом и теплоносителем, применяемым для поддержания нужной температуры активной зоны, и замедлителем, используемым для снижения скорости нейтронов, которые выделяются в результате распада ядер, для поддержания нужной скорости цепной реакции.
Наиболее распространенным типом является легководный реактор, использующий в качестве топлива обогащённый уран, в нём в качестве и теплоносителя, и замедлителя используется обычная или «легкая» вода. У него есть две основные разновидности:
кипящий реактор, где пар, вращающий турбины, образуется непосредственно в активной зоне.
водо-водяной энергетический реактор, где пар образуется в контуре, связанном с активной зоной теплообменниками и парогенераторами.
Газоохлаждаемый ядерный реактор с графитовым замедлителем получил широкое распространения благодаря возможности эффективно вырабатывать оружейный плутоний и возможности использовать необогащённый уран.
В тяжеловодном реакторе в качестве и теплоносителя, и замедлителя используется тяжелая вода, а топливом является необогащённый уран, используется в основном в Канаде, имеющей собственные месторождения урановых руд.
1.2.История развития атомной энергетики
Впервые цепная реакция ядерного распада была осуществлена 2 декабря 1942 году в Чикагском университете с использованием урана в качестве топлива и графита в качестве замедлителя. Первая электроэнергия из энергии ядерного распада была получена 20 декабря 1951 года в Национальной лаборатории Айдахо с помощью реактора на быстрых нейтронах EBR-I (Experimental Breeder Reactor-I). Произведённая мощность составляла около 100 кВт.
9 мая 1954 года на ядерном реакторе в г. Обнинск была достигнута устойчивая цепная ядерная реакция. Реактор мощностью 5 МВт работал на обогащённом уране с графитом в качестве замедлителя, для охлаждения использовалась вода с обычным изотопным составом. 26 июня в 17:30 энергия, выработанная здесь, стала поступать в потребительскую электросеть .
А́томная электроста́нция  (АЭС) -  ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом), предназначенная для производства электрической энергии).
Атомная транспортная энергетика
Атомоход (атомное судно) — общее название судов с ядерной энергетической установкой, обеспечивающей ход судна. Различают атомоходы гражданские (атомные ледоколы, транспортные суда) и военные (авианосцы, подводные лодки, крейсеры, тяжёлыефрегаты).
Военные корабли США — атомные крейсера «Бейнбридж» и«Лонг Бич», и первый в мире авианосец «Энтерпрайз», самое длинное в мире военное судно, в 1964 году во время рекордного кругосветного путешествия, в течение которого они преодолели 49,190 км за 65 дней без дозаправки.
В декабре 1954 года в США вошла в строй первая атомная подводная лодка «Наутилус».
Российский атомный ледокол«Ямал» 1994 г.
В 1958 начала выдавать электроэнергию первая очередь второй советской АЭС — Сибирской, мощностью 100 Мвт. В 1959 году в СССР спущено на воду первое в мире невоенное атомное судно — ледокол «Ленин».
Атомная энергетика, как новое направление в энергетике, получила признание на проходившей в Женеве в августе 1955 года 1-й Международной научно-технической конференции по мирному использованию атомной энергии, положившей начало международному сотрудничеству в области мирного использования ядерной энергии.
В начале 1970-х годов существовали видимые предпосылки для развития ядерной энергетики. Потребность в электроэнергии росла, гидроэнергетические ресурсы большинства развитых стран были практически полностью задействованы, соответственно росли цены на основные виды топлива.
В 1975 году в Смоленской области (г.Десногорск) было начато строительство атомной электростанции, которая была введена в эксплуатацию в 1982 году.

В промышленной эксплуатации на САЭС находится три энергоблока с уран-графитовыми канальными реакторами РБМК-1000. Электрическая мощность каждого энергоблока — 1 ГВт, тепловая 3,2 ГВт. Энергоблоки с реакторами РБМК-1000 одноконтурные. Связь с Единой энергетической системой России осуществляется шестью линиями электропередачи напряжением 330 кВ (Рославль-1, 2), 500 кВ (Калуга, Михайлов), 750 кВ (Ново-Брянская, Белорусская).
1.3.Экономическое значение атомной энергетики
Доля атомной энергетики в общем производстве электроэнергии в различных странах.
В 2014 году ядерная энергия обеспечивала 2,6 % всей потребляемой человечеством энергии. Ядерный сектор энергетики наиболее значителен в промышленно развитых странах, где недостаточно природных энергоресурсов во Франции, Украине, Бельгии, Финляндии, Швеции, Болгарии, Швейцарии и Японии. Эти страны производят от 20 до 74 % (во Франции) электроэнергии на АЭС.
В 2013 году мировое производство ядерной энергии выросло впервые с 2010 года — по сравнению с 2012 годом произошёл рост на 0,5 % — до 6,55 млрд МВт ч (562,9 млн тонн нефтяного эквивалента). Наибольшее потребление энергии атомных станций в 2013 году составило в США — 187,9 млн тонн нефтяного эквивалента. В России потребление составило 39,1 млн тонн нефтяного эквивалента, в Китае — 25 млн тонн нефтяного эквивалента, в Индии — 7,5 млн тонн.
Согласно отчёту Международного агентства по атомной энергии (МАГАТЭ), на 2013 год насчитывалось436 действующих ядерных энергетических, то есть производящих утилизируемую электрическую и/или тепловую энергию, реакторов в 31 стране мира (кроме энергетических, существуют также исследовательские и некоторые другие).
Примерно половина мирового производства электроэнергии на АЭС приходится на две страны — США и Францию. США на АЭС производят только 1/8 своей электроэнергии, однако это составляет около 20 % мирового производства.
Абсолютным лидером по использованию ядерной энергии являлась Литва. Единственная Игналинская АЭС, расположенная на её территории, вырабатывала электрической энергии больше, чем потребляла вся республика (например, в 2003 году в Литве всего было выработано 19,2 млрд кВт⋅ч, из них — 15,5 Игналинской АЭС). Обладая её избытком (а в Литве есть и другие электростанции), «лишнюю» энергию отправляли на экспорт. Однако, под давлением ЕС (из-за сомнений в её безопасности — ИАЭС использовала энергоблоки того же типа, что и Чернобыльская АЭС), с 1 января 2010 года Игналинская АЭС была окончательно закрыта (предпринимались попытки добиться продолжения эксплуатации станции и после 2009 года, но они не увенчались успехом), сейчас решается вопрос о строительстве на той же площадке АЭС современного типа.
1.4.Объёмы производства атомной электроэнергии по странам
Страны с атомными электростанциями.
     Эксплуатируются АЭС, строятся новые энергоблоки.     Эксплуатируются АЭС, планируется строительство новых энергоблоков.     Нет АЭС, станции строятся.     Нет АЭС, планируется строительство новых энергоблоков.     Эксплуатируются АЭС, строительство новых энергоблоков пока не планируется.     Эксплуатируются АЭС, рассматривается сокращение их количества.     Гражданская ядерная энергетика запрещена законом.     Нет АЭС.
На 2014 год суммарно АЭС мира выработали 2,410 тВт⋅ч энергии, что составило 10,8 % всемирной генерации электричества.
Мировыми лидерами в производстве ядерной электроэнергии на 2014 год являются:
 США (798 млрд кВт·ч/год), работает 104 атомных реактора (20 % от вырабатываемой электроэнергии)
 Франция (418 млрд кВт·ч/год), 58 реакторов.
 Россия (169 млрд кВт·ч/год), 34 реактора.
 Южная Корея (149 млрд кВт·ч/год), 23 реактора.
 Китай (123 млрд кВт·ч/год), 23 реактора.
 Канада (98 млрд кВт·ч/год), 19 реакторов.
 Германия (91 млрд кВт·ч/год), 9 реакторов.
 Украина (83 млрд кВт·ч/год), 15 реакторов.
 Швеция (62 млрд кВт·ч/год), 10 реакторов.
 Великобритания (58 млрд кВт·ч/год), 16 реакторов.
Половина всемирной выработки электроэнергии на АЭС приходится на США и Францию.
1.5.Плюсы атомной энергетики
Современная цивилизация немыслима без электрической энергии. Выработка и использование электричества увеличивается с каждым годом, но перед человечеством уже маячит призрак грядущего энергетического голода из-за истощения месторождений горючих ископаемых и все больших экологических потерь при получении электроэнергии.  Энергия, выделяющаяся в ядерных реакциях, в миллионы раз выше, чем та, которую дают обычные химические реакции (например, реакция горения), так что теплотворная способность ядерного топлива оказывается неизмеримо большей, чем обычного топлива. Использовать ядерное топливо для выработки электроэнергии - чрезвычайно заманчивая идея.
Преимущества атомных электростанций (АЭС) перед тепловыми (ТЭЦ) и гидроэлектростанциями (ГЭС) очевидны: нет отходов, газовых выбросов, нет необходимости вести огромные объемы строительства, возводить плотины и хоронить плодородные земли на дне водохранилищ. Пожалуй, более экологичны, чем АЭС, только электростанции, использующие энергию солнечного излучения или ветра.  Но и ветряки, и гелиостанции пока маломощны и не могут обеспечить потребности людей в дешевой электроэнергии , а эта потребность все быстрее растет.  И все же целесообразность строительства и эксплуатации АЭС часто ставят под сомнение из-за вредного воздействия радиоактивных веществ на окружающую среду и человека.
1.6.Минусы атомной энергетики
Атомная энергетика остаётся предметом острых дебатов. Сторонники и противники ядерной энергетики резко расходятся в оценках её безопасности, надёжности и экономической эффективности. Опасность связана с проблемами утилизации отходов, авариями ,приводящими к экологическим катастрофам,
а также с возможностью использовать повреждение этих объектов (наряду с другими: ГЭС, химзаводами и т. п.) обычным оружием или в результате теракта — как оружие массового поражения. «Двойное применение» предприятий ядерной энергетики, возможная утечка (как санкционированная, так и преступная) ядерного топлива из сферы производства электроэнергии и его использовании для производства ядерного оружия служит постоянным источником общественной озабоченности, политических интриг и поводов к военным акциям .
Тепловое загрязнение
Одной из проблем атомной энергетики является тепловое загрязнение. По мнению некоторых специалистов, атомные электростанции, «в расчете на единицу производимой электроэнергии», выделяют в окружающую среду больше тепла, чем сопоставимые по мощности ТЭС. В качестве примера можно привести проект строительства в бассейне Рейна нескольких атомных и теплоэлектростанций. Расчеты показали, что, в случае запуска всех запланированных объектов, температура в ряде рек поднялась бы до 45°С, уничтожив в них всякую жизнь.
Атом выходит из-под контроля
Аварии на объектах атомной энергетики - самый больной вопрос эксплуатации АЭС.
26 апреля 1986 года на четвертом блоке Чернобыльской АЭС произошла авария, которая привела к разрушению активной зоны реактора и части здания, в котором он был расположен. Государственная комиссия провела расследование причин взрыва, и пришла к выводу: авария произошла во время эксперимента, к проведению которого персонал АЭС был не подготовлен. Включение оператором аварийной защиты реактора привело к взрыву… Сейчас заключение госкомиссии подвергается сомнению, многие независимые эксперты усматривают в нем предвзятость и даже элементы фальсификации. Видимо, никто и никогда не узнает, почему реактор перешел в непредсказуемое состояние, при котором аварийная защита перестала гарантировать остановку ядерной реакции, и что именно заставило оператора нажать злополучную "красную кнопку". Результат - взрыв и пожар, расплавление и распыление радиоактивного "топлива", ужасные последствия для Украины, Белоруссии, соседних европейских стран.
 В результате чернобыльского взрыва в окружающее пространство было выброшено колоссальное количество радиоактивных веществ. Перемещение в атмосфере радиоактивного облака, осаждение радионуклидов с пылью и дождем, распространение почвенных и поверхностных вод, загрязненных радиоактивными изотопами, - все это привело к облучению сотен тысяч человек на территории свыше 23 тыс. км2.
Несколько десятков пожарных и специалистов - ликвидаторов аварии, работавших на расчистке территории разрушенного четвертого блока станции от обломков графита, радиоактивной пыли и кусков ядерного горючего, - погибли от острой лучевой болезни. Еще несколько сотен человек были признаны больными острой лучевой болезнью. 
С огромными трудностями был построен "саркофаг" - уникальное сооружение из бетона и стали, изолирующее взорвавшийся блок ЧАЭС от окружающей среды. Дезактивация зоны радиоактивного поражения продолжается по сей день, и этой работе не видно конца. Эта зона включает в себя два города (Чернобыль и Припять), около 80 брошенных сел с домами, фермами, мастерскими, сельскохозяйственной техникой. В зоне находятся 800 "могильников", где похоронены" автомобили, трактора, бульдозеры, экскаваторы и даже танки, набравшие такие дозы радиации, что их уже невозможно дезактивировать.
Люди, подвергшиеся облучению в результате Чернобыльской аварии, теряют здоровье и страдают от множества болезней, вызванных не только радиацией, но и психологическим шоком.
Однако несмотря на их тяжесть, в целом вероятность таких аварий невелика. С момента появления атомной энергетики произошло не более трех десятков аварий, и лишь в четырех случаях имел место выброс радиоактивных веществ в окружающую среду.
Всемирная ядерная ассоциация опубликовала данные, согласно которым гигаватт*год электроэнергии, произведенной на угольных электростанциях, в среднем (учитывая всю производственную цепочку) обходится в 342 человеческих жертвы, на газовых — в 85, на гидростанциях — в 885, тогда как на атомных — всего в 8.
Радиоактивный "мусор"
Даже если атомная электростанция работает идеально и без малейших сбоев, ее эксплуатация неизбежно ведет к накоплению радиоактивных веществ. Поэтому людям приходится решать очень серьезную проблему, имя которой - безопасное хранение отходов. Радиоактивные отходы образуются почти на всех стадиях ядерного цикла. Они накапливаются в виде жидких, твердых и газообразных веществ с разным уровнем активности и концентрации. Большинство отходов являются низкоактивными: это вода, используемая для очистки газов и поверхностей реактора, перчатки и обувь, загрязненные инструменты и перегоревшие лампочки из радиоактивных помещений, отработавшее оборудование, пыль, газовые фильтры и многое другое.Газы и загрязненную воду пропускают через специальные фильтры, пока они не достигнут чистоты атмосферного воздуха и питьевой воды. Ставшие радиоактивными фильтры перерабатывают вместе с твердыми отходами. Труднее всего подготовить к долговременному хранению высокоактивные отходы. Лучше всего такой "мусор" превращать в стекло и керамику. Для этого отходы прокаливают и сплавляют с веществами, образующими стеклокерамическую массу. Рассчитано, что для растворения 1 мм поверхностного слоя такой массы в воде потребуется не менее 100 лет. В отличие от многих химических отходов, опасность радиоактивных отходов со временем снижается. Бoльшая часть радиоактивных изотопов имеет период полураспада около 30 лет, поэтому уже через 300 лет они почти полностью исчезнут. Так что для окончательного удаления радиоактивных отходов необходимо строить такие долговременные хранилища, которые позволили бы надежно изолировать отходы от их проникновения в окружающую среду до полного распада радионуклидов. Такие хранилища называют могильниками. Необходимо учитывать, что высокоактивные отходы долгое время выделяют значительное количество теплоты. Поэтому чаще всего их удаляют в глубинные зоны земной коры. Вокруг хранилища устанавливают контролируемую зону, в которой вводят ограничения на деятельность человека, в том числе бурение и добычу полезных ископаемых.  Предлагался еще один способ решения проблемы радиоактивных отходов - отправлять их в космос. Действительно, объем отходов невелик, поэтому их можно удалить на такие космические орбиты, которые не пересекаются с орбитой Земли, и навсегда избавиться радиоактивного загрязнения. Однако этот путь был отвергнут из-за опасности непредвиденного возвращения на Землю ракеты-носителя в случае возникновения каких-либо неполадок.В некоторых странах серьезно рассматривается метод захоронения твердых радиоактивных отходов в глубинные воды океанов. Этот метод подкупает своей простотой и экономичностью. Однако такой способ вызывает серьезные возражения, коррозия достаточно быстро нарушит целостность контейнеров, и радиоактивные вещества попадут в воду, а морские течения разнесут активность по морским просторам.
Заключение
Конечно, от атомной энергетики можно вообще отказаться. Тем самым будет полностью устранена опасность облучения людей и угроза ядерных аварий. Но тогда для удовлетворения потребностей в энергии придется наращивать строительство ТЭЦ и ГЭС. А это неизбежно приведет к большому загрязнению атмосферы вредными веществами, к накоплению в атмосфере избыточного количества углекислого газа, изменению климата Земли и нарушению теплового баланса в масштабах всей планеты. Между тем призрак энергетического голода начинает реально угрожать человечеству. Радиация - грозная и опасная сила, но при должном отношении с ней вполне можно работать. Характерно, что меньше всего боятся радиации те, кто постоянно имеет с ней дело и хорошо знает все связанные с ней опасности. В этом смысле интересно сравнить статистику и интуитивную оценку степени опасности различных факторов повседневной жизни. Так, установлено, что наибольшее число человеческих жизней уносят курение, алкоголь и автомобили. Между тем, по оценке людей из групп населения, различных по возрасту и образованию, наибольшую опасность жизни несут атомная энергетика и огнестрельное оружие (урон, приносимый человечеству курением, алкоголем явно недооценивается).
Специалисты, которые могут наиболее квалифицированно оценить достоинства и возможности использования атомной энергетики, считают, что человечеству уже не обойтись без энергии атома. Атомная энергетика - один из наиболее перспективных путей утоления энергетического голода человечества в условиях энергетических проблем, связанных с использованием ископаемого горючего топлива.
Но в современном обществе отношение к атомной энергетике неоднозначное. Такой вывод я сделал, познакомившись с литературой по данной теме и проведя социологический опрос. Я понял, что большинство людей не обладает достаточной информацией, чтобы судить о плюсах и минусах атомной энергетики.
Поэтому моя исследовательская работа необходима для представления общей картины развития атомной энергетики, о влиянии ее на нашу жизнь и экологию. Да, пусть некоторые говорят против АЭС, но они не могут отрицать, что АЭС нам необходимы!
Я считаю, что работу по данной теме необходимо продолжать и развивать. Для этого я хотел бы предложить проводить экскурсии в информационный центр по атомной энергии города Смоленска, на Смоленскую АЭС. Ведь такая работа со школьниками - основа формирования позитивного отношения к атомной отрасли, а это может позволить выявить среди учащихся тех, кто захочет связать свою жизнь с работой в атомной промышленности.
Список использованной литературы
Большой энциклопедический словарь: Ядерная энергетика / Гл. ред. А. М. Прохоров. — 1-е изд. — М.: Большая Российская энциклопедия, 1991.-350с.
 Грешилов А. А., Егупов Н. Д., Матущенко А. М. Ядерный щит. — М.: Логос, 2008.-170с. 
 Родионов В. Г. Проблемы традиционной энергетики // Энергетика: проблемы настоящего и возможности будущего. — М.: ЭНАС, 2010.-115с. 
Интернет- источники:
http://treeofknowledge.narod.ru/accident.htmhttp://www.dozimetr.biz/radiaciya_vokrug_nas_osnovnie_istochniki.phphttp://www.bestgenerator.ru/krupn-avarii.htmlhttp://www.lplaces.com/ruhttp://ru.wikipedia.org/