План–конспект урока по физике «Самоиндукция. Индуктивность. Энергия магнитного поля тока» (11 класс)


План – конспект урока
«Самоиндукция. Индуктивность. Энергия магнитного поля тока»

Выполнила студентка 5 курса
группы ФМ-112
очной формы обучения
физико-математического образования
Кежутина Ольга Владиславовна
Дата проведения: 23.09.16
Владимир 2016
Тема урока: Самоиндукция. Индуктивность. Энергия магнитного поля тока.
Класс: «11б»
Тип урока: урок усвоения новых знаний.
Вид урока: урок-лекция.
Цель: сформировать представление о том, что изменение силы тока в проводнике создает вихревое воле, которое может или ускорять или тормозить движущиеся электроны; сформировать представление об энергии, которой обладает электрический ток в проводнике и энергии магнитного поля, созданного током.
Задачи:
Образовательные: Повторить знание учащихся о явление электромагнитной индукции, углубить их; на этой основе изучить явление самоиндукции. Научить использовать закон электромагнитной индукции для объяснения явлений. Ввести формулу для расчета энергии магнитного поля тока и понятие электромагнитного поля.
Воспитательные: Воспитать интерес к предмету, трудолюбие и умение внимательно оценивать ответы товарищей, умения работать коллективно и в парах.
Развивающие: Развитие физического мышления учащихся, расширение понятийного аппарата учащихся, формирование умений анализировать информацию, делать выводы из наблюдений и опытов.
Оборудование:
Ход урока:
Этап урока Время Деятельность учителя Деятельность ученика Методика
Организационный этап.
11.20 – 11.21 -Здравствуйте, ребята, садитесь.
Ученики настраиваются на урок. Актуализация знаний.
11.22-11.28 Проверка домашнего задания, если у учеников возникли вопросы, то разбираем их. 
Фронтальный опрос:
Какое поле называют вихревым электрическим полем?
Что является источником вихревого поля?
Что такое токи Фуко? Приведите примеры их использования.
От чего зависит ЭДС индукции, возникающая в проводнике, который движется в переменном во времени магнитном поле? Ученики проверяют домашнее задание, отвечают на вопросы:
Поле которое порождает изменяющееся во времени, магнитное поле. 
Изменяющееся во времени, магнитное поле.
Индукционные токи достигающие в массивных проводниках большого числового значения, из-за того, что их сопротивление мало.
От скорости движения проводника в однородном магнитном поле.
Примерные наводящие вопросы:
4.Вспомните формулу, по которой можно найти ЭДС индукции в движущихся проводниках.
Мотивационный этап. 11.29-11.31 Основы электродинамики были заложены Ампером в 1820 году. Работы Ампера вдохновили многих инженеров на конструирование различных технических устройств, таких как электродвигатель (конструктор Б.С. Якоби), телеграф (С. Морзе), электромагнит, конструированием которого занимался известный американский ученый Генри.
Джозеф Генри прославился благодаря созданию серии уникальных мощнейших электромагнитов с подъемной силой от 30 до 1500 кг при собственной массе магнита 10 кг. Создавая различные электромагниты, в 1832 году ученый открыл новое явление в электромагнетизме – явление самоиндукции. Именно этому явлению посвящен данный урок.
Запись темы на доске: «Самоиндукция. Индуктивность. Энергия магнитного поля тока». Изучение нового материала.
11.32-11.45  Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.
Опыт: На рисунке изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка.

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.
Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.
1. Замыкание ключа.
В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх.

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает. Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток. По правилу Ленца этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.
То есть, для рассматриваемого на рисунке 4 витка индукционный ток должен быть направлен по часовой стрелке, тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно, благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.
2. Размыкание ключа.
При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.
Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике. В этом заключается суть явления самоиндукции. Самоиндукция – это частный случай электромагнитной индукции.
Самоиндукция – это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.
Индуктивность. Модуль вектора индукции В магнитного поля, создаваемого током, пропорционален силе тока. Так как магнитный поток Ф пропорционален В, то Ф ~ В~ I.
Можно, следовательно, утверждать, что
Ф = LI,    
где L — коэффициент пропорциональности между током в проводящем контуре и магнитным потоком.
Величину L называют индуктивностью контура, или его коэффициентом самоиндукции.
Используя закон электромагнитной индукции и полученное выражение, получаем равенство
εis=-∆Ф∆t=-L∆I∆tесли считать, что форма контура остается неизменной и поток меняется только за счет изменения силы тока.
Из формулы следует, что индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.
Индуктивность, подобно электроемкости, зависит от геометрических факторов: размеров проводника и его формы, но не зависит непосредственно от силы тока в проводнике. Кроме геометрии проводника, индуктивность зависит от магнитных свойств среды, в которой находится проводник.
Очевидно, что индуктивность одного проволочного витка меньше, чем у катушки (соленоида), состоящей из N таких же витков, так как магнитный поток катушки увеличивается в N раз.
Единицу индуктивности в СИ называют генри (обозначается Гн). Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В:
1 Гн=1 В1 Ас=1 В∙сАС явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.
Аналогия между самоиндукцией и инерцией. Явление самоиндукции подобно явлению инерции в механике. Так, инерция приводит к тому, что под действием силы тело не мгновенно приобретает определенную скорость, а постепенно. Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила. Точно так же за счет самоиндукции при замыкании цепи сила тока не сразу приобретает определенное значение, а нарастает постепенно. Выключая источник, мы не прекращаем ток сразу. Самоиндукция поддерживает его некоторое время, несмотря на сопротивление цепи.
Для создания электрического тока и, следовательно, его магнитного поля необходимо выполнить работу против сил вихревого электрического поля. Эта работа (согласно закону сохранения энергии) равна энергии электрического тока или энергии магнитного поля тока.
Записать выражение энергии тока I, текущего по цепи с индуктивностью L, т. е. для энергии магнитного поля тока, можно на основании аналогии между инерцией и самоиндукцией.
Если самоиндукция аналогична инерции, то индуктивность в процессе создания тока играет ту же роль, что и масса при увеличении скорости в механике. Роль скорости тела в электродинамике играет сила тока как величина, характеризующая движение электрических зарядов.
Тогда энергию тока можно считать величиной подобной кинетической энергии в механике:
WM=LI22Энергия магнитного поля тока. Отвечают на вопросы, вступают в дискуссию, делают выводы, делают записи в тетрадях.
Закрепление изученного материала
11.46-11.56
Предлагает решить задачу:
№931. Какова индуктивность контура, если при силе тока 5 А в нем возникает магнитный поток 0,5 мВб?
№933. Найти индуктивность проводника, в котором при равномерном изменении силы тока на 2 А в течение 0,25 с возбуждается ЭДС самоиндукции 20 мВ.
№937. В катушке индуктивностью 0,6 Гн сила тока равна 20 А. Какова энергия магнитного поля этой катушки? Как изменится энергия поля, если сила тока уменьшится вдвое?
№939. Найти энергию магнитного поля соленоида, в котором при силе тока 10 А возникает магнитный поток 0,5 Вб. Решают задачи у доски и на местах. Подведение итогов. Домашнее задание.
11.57-11.58 Выставление и обоснование отметок. Запись и обсуждение домашнего задания.
Д/З: §14-16, № 932, 934, 938.
Записывают домашнее задание Рефлексия 11.59-12.00 Организуется беседа с целью осмысления участниками урока своих собственных действий в ходе урока.
Вопросы:
1. Что нового вы для себя узнали на уроке?
2. Понятен ли был материал урока?
3. Понравился ли вам урок? Принимают участие в беседе №931. Какова индуктивность контура, если при силе тока 5 А в нем возникает магнитный поток 0,5 мВб?
№933. Найти индуктивность проводника, в котором при равномерном изменении силы тока на 2 А в течение 0,25 с возбуждается ЭДС самоиндукции 20 мВ.
№937. В катушке индуктивностью 0,6 Гн сила тока равна 20 А. Какова энергия магнитного поля этой катушки? Как изменится энергия поля, если сила тока уменьшится вдвое?
№939. Найти энергию магнитного поля соленоида, в котором при силе тока 10 А возникает магнитный поток 0,5 Вб.
№932. Какой магнитный поток возникает в контуре индуктивностью 0,2 мГн при силе тока 10 А?
№934. Какая ЭДС самоиндукции возбуждается в обмотке электромагнита индуктивностью 0,4 Гн при равномерном изменении силы тока в ней на 5 А за 0,02 с?
№938. Какой должна быть сила тока в обмотке дросселя индуктивностью 0,5 Гн, чтобы энергия поля оказалась равной 1 Дж?