Разделы | Химия |
Тип | |
Формат | Microsoft Word |
Язык | Украинский |
Загрузить архив: | |
Файл: Himiya.zip (27kb [zip], Скачиваний: 334) скачать |
Водень.
Водень – перший елемент періодичної системи, його електронна формула 1S1. Ступені окислення водню можуть дорівнювати –1, +1, а також 0 (у простій речовині). За значеннями ступенів окислення водень схожий з лужними металами (+1) та із галогенами (-1). Тому в періодичній системі для нього зазначено два положення – відповідно в обох підгрупах цих елементів. Однак найбільш стійким ступенем окислення у водню – (+1). Таким чином, особливості будови електронної оболонки та його властивостей не дозволяють однозначно визначити його положення в періодичній системі.
Вміст водню у земній корі 30 ат.%. В усіх природних сполуках водень має ступінь окислення +1. Переважна кількість водню існує у вигляді Н2О. Водень входить до складу горючих газів, у природних сумішах углеводнів (нафти) та інших органічних сполук. Добування водню в усіх випадках – це відновлення із +1 до 0. Найбільше значення у промисловості має реакція метану з водяною парою:
СН4 + Н2О = СО + 3Н2
СО + Н2О = СО2 + Н2
Водень можна також отримати реакцією водяної пари з розжареним коксом:
С + Н2О = СО + Н2
СО + Н2О = СО2 + Н2
Для добування водню застосовують також електроліз водяних розчинів солей, кислот, лугів. Наприклад:
Zn+2HCl=ZnCl2+H2
2Al+6NaOH+6H2O=2Na3[Al(OH)6]+3H2
Водень – безбарвний без запаху газ. Водень мало розчинний у воді. Вільний водень в 0 ступені може бути окисником і відновником. Відновні властивості виявляє в реакціях з неметалами, а також по відношенню до оксидів і галогенів:
2H2+O2=2H2O
H2+Cl2=2HCl
CuO+H2=Cu+H2O
WO3+3H2=W+3H2O
У реакціях з активними металами є окисником, утворює гідриди:
2Na+H2=2NaH
З деякими елементами, наприклад, кремнієм, фосфором, водень не реагує. При нагріванні водень реагує з багатьма d – металами. Сполуки що містять водень в степені окислення +1, є їх окислювальні властивості, а в –1 – відновні.
NaH+HOH=NaOH+H2
Водень застосовують для добування ряду металів (Мо,W, Fe, Cu). У великих кількостях Н2 використовують у виробництві аміаку та органічних синтезах.
Кисень.
Кисень – найпоширеніший у природі елемент (58 ат.%). Більшість його знаходиться в ступені окислення –2 у вигляді сполук солей кремнієвих кислот (силікатів), піску (SiO2), води, карбонатів, фосфатів, сульфатів. Невелика частина кисню перебуває у вільному стані в атмосфері. Незначні кількості кисню отримують у лабораторії термічним розкладом кисневмісних сполук. Наприклад:
2KClO3=2KCl+3O2
2KMnO4=K2MnO4+MnO2+O2
Кисень є типовим окисником, він вступає в реакцію з металами, неметалами, складними речовинами. Продуктами цих реакцій найчастіше є оксиди:
4Fe+3O2=2Fe2O3
C+O2=CO2
CH4+2O2=CO2+2H2O
2ZnS+3O2=2ZnO+2SO2
Однак в реакціях з деякими найактивнішими металами утворюють сполуки зв’язок між атомами кисню в яких збеігається:
2Na+O2=Na2O2 (пероксид натрію)
K+O2=KO2 (надпероксид калію)
Li+O2=Li2O (оксид літію)
Озон О3 – алотропічна модифікація кисню. Його добувають дією тихого електричного розряду або ультрафіолетового проміння на кисень:
3O2=2O3
Цей несамодільний процес відбувається за стадіями:
O2+hv=O2*
O2+O2*=O3+O
O2+O=O3
О3 – дуже сильний окисник за рахунок атомарного кисню, який утворюється на початкових стадіях реакцій О3 з різними відновниками. Наприклад:O3=O2+O
2KI+O3+H2SO4=I2+K2SO4+O2+H2O
O O2
Бінарні сполуки з киснем можна розділити на кілька видів:
Оксиди - кисень має ступінь окислення –2, у тому числі основні ( Na2O, CaO), кислотні (СО2, P2O5), амфотерні (ZnO, Al2O3), несолетвірні (N2O, NO).
Пероксидні сполуки – речовини, атоми кисню в яких зв’язані між собою хімічними зв’язками: пероксиди (N2O2, ВаО2), надпероксиди (КО2), озоніди (КО3).
Субоксиди – сполуки з металічними зв’язками ( Ті6О, Ті3О).
Розглянемо властивості сполук кисню з воднем.
Вода. Це стійка речовина ( Нутв. = -286 кДж/моль). Лише за температури понад 1000оС помітним стає розкладання на прості речовини:
2H2O=2H2+O2
Понад 5000оС розкладання відбувається практично повністю.
Вода – найбільш широко застосовуваний розчинник для полярних і іонних сполук.
Для води характерні реакції приєднання (гідратації) – з основними і кислотними оксидами:
CaO+H2O=Ca(OH)2
P2O5+3H2O=2H3PO4
з солями: CuSO4+5H2O=CuSO4*5H2O
Вода може брати участь у реакціях обміну. Наприклад гідролізу солей. У реакціях з сильними окисниками вода виступає як відновник за рахунок кисню
(-2):
2F+2H2O=4HF+O2
При дії відновників за рахунок водню (+1) вода проявляє окиснювальні властивості:
2HOH+2Na=2NaOH+H2
Розчинні солі у воді не існують через сильний гідроліз і розклад Н2О2 у лужному середовищі:
Na2O2+2HOH=2NaOH+H2O2
2H2O2=2H2O2+O2
Більш стійки до дії води нерозчинні солі, наприклад ВаО2, реакцією обміну якого з Н2SО4 можна добути Н2О2:
BaO2+H2SO4=H2O2+BaSO4
Галогени.
Галогени – фтор, хлор, бром, йод, астат. Для цих елементів найбільш стійким є ступінь окислення –1.
Фтор – найбільш електронегативний елемент, позитивних ступенів окислення не має, в інших галогенів електронегативність менша і можливі позитивні ступені окислення +1, +3, +5, +7 (у хлору також +4 і +6).
У природних сполуках галогени мають ступінь окислення –1. Найважливіші мінерали плавиковий шпат СаF2, фторапатит CaF2 * 3Ca3 (PO4)2, кам’яна сіль NaCl, сильвініт KCl*NaCl та інші. Іони хлору містяться в морській воді. Бром і йод власних мінералів не утворюють, іони І і Br містяться у воді деяких солоних озер, у нафтових водах.
Добування галогенів – це процес їх окислення від ступеня окислення –1 до 0. Фтор (2) є найсильнішим окисником, його можна одержати лише електролізом.
Хлор у промисловості добувають електролізом концентрованого водного розчину NaCl. У лабораторії хлор добувають із соляної кислоти при взаємодії із сильними окисниками, наприклад MnO2, KmnO4:
MnO2+4HCl=MnCl2+Cl2+2H2O
2KmnO4+16HCl=2MnCl2+5Cl2+2KCl+8H2O
Аналогічно добувають в лабораторії бром (2) і йод (2) використовуючи замість кислот (соляної і бромної) більш доступні солі цих кислот:
2NaBr+MnO2+2H2SO4=Br2+MnSO4+Na2SO4+2H2O
10KI+2KMnO4+8H2SO4=5I2+MnSO4+6K2SO4+8H2O
Для промислового добування бром (2) і йод (2) нафтові води або води солених озер обробляють хлором:
2Br+Cl2=Br2+2Cl
2I+Cl2=I2+2Cl
У звичайних умовах фтор – безбарвний газ, а хлор – жовто-зелений, бром – темно-червона рідина, йод – темно-коричневі кристали. Найхарактерніші для галогенів – окиснювальні властивості. Найсільнішим окисником є фтор (2), який окислює кисень до –2 і навіть деякі благородні гази:
Xe+F2=XeF2
2H2O+2F2=4HF+O2
SiO2+2F2=SiF4+O2
Галогени окислюють метали, багато які неметали і складні речовини:
2Al+3Br2=2AlBr3
2P+3Cl2=2PCl3
2NH3+3Br2=N2+6HBr
У реакціях з воднем спостерігається зниження окиснювальних властивостей: Н2 + Г2 = 2НГ. Реакція з фтором швидко перебігає в темноті і на холоді, реакція з бромом йде швидко лише при нагріванні, реакція з йодом оборотна і протікає при підвищенні температури.
При взаємодії хлору з водою відбувається його самоокисненням, самовідновленням , утворюються дві кислоти – соляна і хлорнуватиста:
Cl2+H2O=HCl+HOCl
а в реакціях з лугами – солі цих кислот:
Cl2+2KOH=KCl+KOCl+H2O
Бром і йод з водою і лугами реагують аналогічно хлору.
Галогеноводні НГ можна добути реакціями галогенів з воднем бо (для HF i HCl) реакціями обміну:
CaF2+H2SO4=CaSO4+2HF
NaCl+H2SO4=NaHSO4+HCl
NaCl+NaHSO4=Na2SO4+HCl
HCl, HBr, HI за звичайних умов перебувають у газоподібному стані, добре розчиняються у воді. У водних розчинах НГ мають кислотні властивості. HCl, HBr, HI - сильні кислоти.
Підсилення відновних властивостей Г виявляються у їх різному реагуванні на дію концентрованої H2SO4. Так ця кислота не реагує на HCl, але частково окіснює HBr, причому S (6) відновлюється до SO2; НІ відновлює сірку (6) не тільки для SO2, а і до вільної сірки або навіть H2S:
2HBr+H2SO4=Br2+SO2+2H2O
8HI+H2SO4=4I2+H2S+4H2O
Через це HBr і HI неможливо добути дією концентрованої сірчаної кислоти на солі цих кислот.
Реакція утворення і розкладу летних галогенів також використовують для очищення та добування металів:
TiI4=Ti+2I2
Фтор не утворює кисневих кислот. Для хлору відомі кислоти: хлорнуватиста HCl, хлорисна HCl2, хлорнувата HCl3, хлорна HCl4. Лише остання відділена в індивідуальному стані, решта існує в розчинах. Аналогічні кислоти (окрім HBrО2 і HIО2 ) утворюють бром і йод.
Сірка.
З поміж р – елементів VI групи, окрім кисню, найбільше значення має сірка.
Найвищий ступінь окиснення в сірки +6 відповідає стану, коли вона утворює 6 ковалентних зв’язків з більш електронегативними партнерами. Найхарактернішими для сірки є ступені окиснення –2, 0, +4, +6.
Сірка – розповсюджений елемент. Добування сірки зводиться до видобування і очищення самородної сірки.
Сірка існує в кількох алотропних модифікаціях. За звичайних умов стійка моноклинна (a) сірка. За температури понад 95,4оС вона перетворюється на ромбічну ( b ) сірку.
При незначному нагріванні сірка енергійно реагує із багатьма матеріалами (з рідкою ртуттю), воднем, виступаючи як окисник:
2Al+3S=Al2S3
H2+S=H2S
При дії кисню і галогенів (Cl, F) сірка виявляє відновні властивості:
S+O2=SO2
2S+Cl2=S2Cl2
Сірководень H2S добувають сполученням простих речовин або через реакції обміну:
FeS+2HCl=FeCl2+H2S
H2S – газ і різким неприємним запахом, дуже отруйний. У розчинах – це слабка кислота. Розчинні сульфіди (солі лужних металів, солі амонію) піддаються сильному гідролізу, при цьому гідроліз перебігає ступінчасто і оборотно:
або Na2S+HOH=NaHS+NaOH
Гідроліз деяких сульфатів (Al2S3, Cr2S3) йде практично до кінця, оскільки в результаті утворюється слабка нерозчинна основа і виділяється газоподібний сірководень:
Al2S3+6H2O=2Al(OH)3+3H2S
Більшість сульфатів металів у воді нерозчинна, з водою не реагує, причому деякі х них (Fe, MnS, ZnS) розчиняються при дії кислот, а ряж інших (PbS, HgS, Sb2S3) з кислотами не реагують. Нерозчинні у кислотах сульфіди можна добути дією H2S на розчинні солі:
Pb(NO3)2+H2S=PbS+2HNO3
Усі нерозчинні сульфіди можна добути реакціями обміну з використанням розчинних у воді сульфідів:
CuSO4+Na2S=CuS+Na2SO4
FeSO4+Na2S=FeS+Na2SO4
Сульфіди активних металів одержують дією вугілля на сульфати при нагріванні:
Na2SO4+4C=Na2S+4CO
H2S окиснюється киснем, на повітрі горять:
2H2S+3O2=2SO2+2H2O (при надлишку О2)
2H2S+O2=2S+2H2O (при недостатній кількості О2)
2ZnS+3O2=ZnO+SO2
Na2S+I2=2NaI+S
H2S+4Br2+4H2O=H2SO4+8HBr
При дії сірки на сульфіди металів утворюються полісульфіди:
Na2S+(n-1)S=Na2Sn
Сірка утворює два стійких оксидів – SO2 і SO3. SO2 за звичайних умов - безбарвний газ з різким запахом, є отруйним. Це кислотний оксид добре розчинний у воді. Частково реагує з водою з утворенням сірчистої кислоти:
SO2+H2O=H2SO3
Внаслідок оборотності цієї реакції НSO3 існує лише у розчинах. Ця кислота утворює лише два типи солей сульфіти (Na2SO3, CaSO3) і гідросульфіти (NaHSO3, Ca(HSO3)2). Останні не стійки, переходять у піросульфіти.
Для сірки (VI) характерні відновні властивості. Реакція з киснем 2SO2+O2=2SO2, яка перебігає при підвищенні температури, застосовується для одержання SO3 і далі сірчаної кислоти. При кімнатній температурі ця реакція практично не йде. Практично миттєво сірчиста кислота та її солі у розчинах реагують з галогенами KMnO4, K2Cr2O7:
Na2SO3+I2+H2O=Na2SO4+2HI
Оксид сірки (VI) енергійно сполучається з водою:
SO3+H2O=H2SO4
Сірчана кислота – в’язка безбарвна рідина. У водному розчині Na2SO4 – сильна двоосновна кислота. Розведена кислота реагує з металами, що стоять у ряду активностей до водню, з виділенням водню, наприклад:
Zn+H2SO4(p)=ZnSO4+H2
У концентрованій сірчаній кислоті сірка (VI) може виступати як окисник, наприклад окиснюючи HBr i HI (але ні HCl) до вільних галогенів. Концентрована сірчана кислота не діє на більшість металів за звичайних умов, але при нагріванні реагує навіть з малоактивними металами, але ні з благородними металами (Au, Pt та інші). Якщо метали малоактивні сірка (VI) відновлюється до +4 (SO2):
Cu+2H2SO4(k)=CuSO4+SO2+2H2O
Більш активні метали відновлюють сірку (VI) до простої речовини або навіть до H2S:
4Zn+5H2SO4=4ZnSO4+H2S+4H2O
(SO2, S)
Як сильна і нелетка кислота H2SO4 витісняє чимало інших кислот з їх солей:
NaCl+H2SO4=NaHSO4+HCl
KNO3+H2SO4=KHSO4+HNO3
Більшість солей H2SO4 розчинна в воді. Нерозчинні BaSO4, SrSO4, PbSO4, малорозчиниий CaSO4.
Чимало кольорових металів добувають із сульфідних руд. Na2SO3, NaHSO3, Ca(HSO3)2 використовують при добуванні целюлози з деревини. Сірка – шкідливий домішок у чавунах і сталях. Сірчана кислота – використовується при гідрометалургійному добуванні Zn, Cd, Ni, Cu.
Азот.
За електронегативністю азот поступається лише фтору і кисню. У сполуках з киснем він проявляє позитивні ступені окислення +1,+3,+4,+5. Азот має і різні негативні ступені окислення. Найвищий відповідає числу електронів на зовнішньому рівні. Найнижчий –3 – заповненню електронної оболонки до структури інертного газу (Ne). Найбільш стійким є ступінь окислення 0. Більшість азоту знаходиться у повітрі. Азот добувають перегонкою рідкого повітря.
У молекулі N2 атоми зв’язані потрійним зв’язком. Велика енергія зв’язку зумовлює високу стійкість і малу хімічну активність N2. За звичайних умов азот реагує лише з літієм, з іншими металами – при нагріванні, утворюючи нітриди. З воднем сполучається лише при підвищених температурах і тиску, з киснем – при температурах понад 3000oС. У реакціях з киснем і фтором є відновником, в інших випадках – окисником:
6Li+N2=2Li3N
3Mg+N2=Mg3N2
3H2+N2+2NH3
N2+O2=2NO
N2+3F2=2NF3
Нітриди металів – на відміну від галогенів, сульфідів – не є солями, оскільки їм не відповідають які-небуть кислоти. У нітридів S-металів ступінь окислення –3: Li3N, Mg3N2. Ці нітриди легко вступають у реакцію з водою, наприклад:
Mg3N2+6HOH=3Mg(OH)2+2NH3
Нітриди d-металів тверді, тугоплавкі, мають низьку хімічну активність, не реагують з водою, дуже повільно вступають в реакції з кислотами. Аміак в промисловості добувають синтезом з простих речовин:
N2+3H2=2NH3
У лабораторії аміак можна одержати із солей амонію:
NH3
NH4Cl+NaOH=NaCl+NH4OH
H2O
Аміак розчиняється у воді, він проявляє донорні властивості. Розчин NH3 у воді умовно називають гідроксидом амонію, хоча молекули NH4OH не існує. У реакціях з кислотами утворюютьсясолі амонію:
NH3+HCl=NH4Cl
2NH3+H2CO3=(NH4)2CO3
Солі амонію стійки за звичайних умов, але при підвищених температурах розкладаються. В результаті може утворитися аміак. Наприклад: (NH4)SO4=NH3+NH4HSO4. Проте у деяких випадках ( NH4Cl, NH4Br та ін.) утворені гази не розділяються:
NH4Cl=NH3+HCl
і при проходженні знову утв. вихідна сіль. При дії металів відбувається процес заміщення атомів водню:
2Al+2NH3=2AlN+3H2
Тому аміак часто використовується для добування нітридів. Аміак не горить на повітрі, не взаємоіє у розчинах з багатьма окисниками, наприклад із сполуками Cr3. Однак у присутності каталізаторів аміак регаує з киснем:
(Cr2O3)
4NH3+3O2=2N2+6H2O
(Pt)
4NH3+5O2=4NO+6H2O
У розчинах аміак швидко окислюється галогенами (Cl2, Br2):
2NH3+3Cl2=N2+6HCl
Азот утворює велику кількість різноманітних кисневих сполук. NO2 добувають у промисловості каталітичним (Pt) окисненням аміаку, синтез із простих речовин (N2 +O2 = 2NO) не використовується через великі енергетичні витрати.
Найважливішою є властивість NO швидко і практично повністю окислюватися киснем:
2NO+O2=2NO2
Взаємодія NO2 з водою йде за рівнянням:
2NO2+HOH=HNO3+HNO2
Азотиста кислота HNO2 існує лише розчинах, багато які її солі (KNO2, NaNO3) стійкі. Сама ж кислота при підвищені концентрації розчину або температури розкладається:
NO2
2HNO2=HOH+N2O3
NO
Тому кінцевими продуктами реакції NO2 з водою є HNO3 та NO:
3NO2+HOH=2HNO3+NO
У присутності О2, NO перетворюється у NO2 і єдиним продуктом реакції стає HNO3:
4NO2+O2+2HOH=4HNO3
Ця реакція покладена в основу промислового способу добування азотної кислоти.
У водних розчинах HNO3 є сильною кислотою, практично повнімтю дисоціює. Солі азотної кислоти, нітрати, одержані для більшості металів, майже всі вони розчинні у воді. При дії на метали концентрованою азотною кислотою продуктом відновлення звичайно є NO2, розведеною азотною кислотою на метали – NO, а на активні метали – суміш NO, N2O, N2, NH4NO3:
Cu+4HNO3(k)=Cu(NO3)2+2NO2+2HOH
3Cu+8HNO3(p)=3Cu(NO3)2+2NO+4HOH
4Zn+10HNO3(p)=4Zn(NO3)2+N2O+5HOH
Азотна кислота не реагує з благородними металами (Au, Pt та ін.), деякі порівняно активні метали (Al, Fe) на холоді пасивуються концентрованою азотною кислотою внаслідок утворення на їх поверхні при дії HNO3 інертних оксидних плівок.
Окиснювальні властивості азоту (5) у нітратах виявляються запідвищених температур. Вийнятком є нітрати малоактивних металів, оксиди яких термічно нестійкі: 2AgNO3 = Ag + 2NO2 + O2.
Найширшого застосування набули аміак і азотна кислота. Велика роль азоту та його сполук у металургії. Солі азотної кислоти застосовують при добуванні деяких металів (наприклад VO2 (NO3)2 при добуванні урану); “царська водка” (суміш азотної і соляної кислот) – при добуванні пластиннових металів.
Фосфор.
У зв’язку з тим, що атом фосфору має велики розмірі, а значичть, меншу електронегативність (Е=2,1), найнижчий ступінь окислення –3, який відповідає завершенню зовнішнього рівня, стає менш стійким. Навпаки найстійкішою стає найвищий ступінь окислення +5.
Добування фосфору при дії вугілля і піску на фосфат кальцію в електропечах при 1500оС:
Ca3(PO4)2+5C+3SiO2=3CaSiO3+2P+5CO
Фософр утворює кілька алотропічних модіфікацій. Білий фосфор легкоплавкий, леткий розчиняється у деяких органічних розчинниках, отруйний, дуже активний, самозаймається при температурах понад 50оС. Червоний і чорний фосфор набаго менш активний, не розчиняється в органічний розчинах, не отруйний. Для фосфору характерні відновні властивості, які він виявляє у реакціях з неметалами:
4P+3O2 (надлишок)=2P2O3
4P+5O2 (надлишок)=2P2O5
2P+5Cl2 (надлишок)=2PCl5
В реакціях з активними металами фосфор виступає в ролі окисника: 3Mg+2P=Mg3P2. Зводним фосфором не реагує. Бфлий фосфор вступає в реакцію з лугом, при цьому відбувається його самоокислення – самовідновлення:
P4+3NaOH+3HOH=PH3+3NaH2PO2
Сполуки фосфору з металами, фосфіди, забудовую і властивостями аналогічні нітридам. Фосфіди S – металів реагують з водою, утворюючи фосфін: Mg3P2+6H2O=3Mg (OH)2+2PH3. Фосфін реагує з деякими сильними кислотами за низьких температур з утворенням солей фосфонію: PH3+HI=PH4I. При підвищенні температури або дії води солі фосфонію легко розкладаються. Водночас фосфін є сильним відновником, на повітрі легко займається:
2PH3+4O2=P2O5+3HOH
При дії лугу на бфлий фосфор разом з фосфіном утворює сіль NaH2PO2 (гіпофосфіт натрію). Цій солі відповідає фосфорнуватиста кислота H3PO2. Кислота сильна, одноосновна. Кислота і її солі є сильними відновниками. У зв’язку з цим гіпофосфіти використовуються при хімічному нікелюванні:
NiSO4+NaH2PO2+HOH=Ni+NaH2PO3+H2SO4
При взаємодії P2O5 з водою утворюються фосфорні кислоти:
P2O5+HOH=2HPO3 (метафосфорна кислота)
P2O5+2HOH=H4P2O7 (дифосфорна кислота)
P2O5+3HOH=2H3PO4 (ортофосфорна кислота)
Найбільше значення має ортофосфорна кислота (фосфорна).
Для її добування окрім реакції P2O5 з водою, використовують дію сірчаної кислоти на фосфат кальцію:
Ca3(PO4)2+3H2SO4=3CaSO4+2H3PO4
Кислота триосновна, утворює три типи солей: середні, або фосфати (Na3PO4, Ca3 (PO4)2), кислі, в тому числі гідрофосфати (Na2HPO4, CaHPO4) і дегідрофосфати (NaH2PO4, Ca(H2PO4)2).
Фосфор є шкідливою домішкою в човунах і сталях. Гіпофосфати застосовуються для добування нікельових покриттів. У великих кількостях солі фосфорної кислоти використовують як фосфорні добрива.
Вуглець.
Електронегативність вуглецю=2,5, електрони хімічних зв’язків можуть зсуватися від атома вуглецю до його партнерів (виникає ступінь окислення +4), а також до атома вуглецю від його партнерів (ступінь окислення –4). Відомі сполуки в яких вуглець має різні промежні ступіні окислення. Найстійкиший ступінь окислення +4.
Більшість його знаходиться у карбонатах (CaCO3, MgCO3). Вуглець міститься в органічних речовинах, в тому числі у нафті, вугіллі, сланці, природному газі. Вуглець зустрічається і у вигляді простих речовин – графіту, алмазу.
Відомо кілька алотропічних модифікацій вуглецю: алмаз, графіт, карбін, фулерени.
Вуглець – найтугоплавкіша проста речовина. Зазвичайних умов вуглець малоактивний, при нагріванні вступає в реакції з металами і воднем, виявляючи окиснювальні властивості, у реакіях з киснем, сіркою, оксидами металів та ін. – відновні властивості:
Ca+2C=CaC2 C+O2=CO2
4Al+3C=Al4C3 C+2S=CS2
2H2+C=CH4 C+PbO=Pb+CO
З галогенами вууглець безпосередньо не реагує.
Карбіди металів можна розділити на дві групи: карбіди S- (P-) металів і карбіди d – металів. Карбіди першої групи з водою вступають у реакції обміну з утворенням гідроксидів металів і вуглеводнів:
CaC2+2HOH=Ca(OH)2+C2H2 (HCºCH)
Al4C3+12HOH=4Al(OH)3+3CH4
Карбіди звичайно добувають дією надлику вуглецю на оксиди металів:
CaO+3C=CaC2+CO
V2O5+7C=2VC+5CO
Вуглець утворюють 2 оксиди СО і СО2. При згоранні вуглець у надлишку кісню утворюється СО2 Со+О2=СО2, СО2 припідвищенних иемпературах реагує з вуглецем:
CO2+C=2CO
При пропусканні парів води кріз шар разжареного коксу утворюється суміш СО і Н2, які називаються водяним газом:
C+HOH=CO+H2
СО за звичайних умов поводить себе як несолетвірний оксид, не реагує з водою, розчинами кислов і лугів. Однак при підвищеному тиску пр нагіванні вступає в реакцію із лугами, утворюються солі мурашиної кислоти: Со +NaOH=HCOONa. Для СО характерні відовні властивості:
2CO+O2=2CO2 DH= -565 кДж.
Fe2O3+3CO=2Fe+3CO2
NiO+CO=Ni+CO2
Оксиди вуглецю (2) сполучаються із багатьма металами, утворюючи карбоніди:
Fe+5CO=FeCO5 (карбоніл заліза)
Ni+4CO=Ni(CO)4 (карбоніл нікелю)
Велике значення має реакція СО з аміаком:
CO+NH3=HCN+HOH
Дуже отруйна. Повільно розкладаєтсья придії води і кисню. Солі цієї кислоти (NaCN, KCN) називають ціанідами. Оксид вуглецю (4) добувають у промисловості термічним розкладом CaCO3:
CaCO3=CaO+CO2
а у лабораторії – дією соляної кислоти на СаСО3 в апараті Кіппа:
CaCO3+2HCl=CaCl2+HOH+CO2
СО2 розчиняється у воді, утворюючи вугільну кислоту:
CO2+HOH=H2CO3
Вугільна кислота нестійка, існує лише у водному розчині, двухосновна. Для перетворення карбонатів у гідрокарбонати можна використати дію вугільної кислоти на карбонати:
CaCO3+H2CO3=Ca(HCO3)2
для оборотного переходу – донейтралізація кислої солі:
Ca(HCO3)2+Ca(OH)2=2CaCO3+2HOH
В зв’язку з тим, що вугільна кислота являєтсья слабкою, карбонати підлягають значному гідролізу. Гідроліз солей лужних металів іде ступінчато і оборотно.
Вуглець і його сполуки дуже важливі для металургії. Вуглець (кокс) використовується як дешевий відновник при отриманні багатьох металів (Zn, Cu, Sn, Pb, Ni, Co і ін). Вуглець – важливий компонент сплавів (чугуна, сталі та ін).
Кремній.
Електронегативність кремнію (1,9) невисока, тому найбільш стійка ступінь окислення +4. Найбільш низька ступінь окислення –4 проявляється в сполуках з активними металами, проміжні ступені окислення (крім 0) – нестійкі.
Кремній одержують в електропечах відновленням SiO2 коксом:
SiO2+2C=Si+2CO DH=68.9 Дж.
Необхідний для напівпровідників техніки кремній особливої частоти отримують розкладанням його водневих з’єднань, йодиду кремнію або реакції SiCl4 з чистим цинком.
Кремній – полімер, в реакйії вступає тільки при нагріванні. На відміну від вуглецю не реагує з Н2, але з’єднується з галогенами:
Si+2Mg=Mg2Si (Si – окисник)
Si+O2=SiO2
Si+2Cl2=SiCl4 (Si – відновник)
Сполуки кремнію з металами, силіциди, як і карбіди, можна поділити на дві групи. Солеподібні силіциди S-металів (Mg2Si, Ca2Si) легко реагують з кислотами (але не з водою), утворюючи сполуки кремнію з воднем, - сілани:
Mg2Si+4HCl=2MgCl2+SiH4
Силіциди d-металів, які частіш за все мають склад Sin+H2n+2. На повітрі сілани самозаймаються:
SiH4+2O2=SiO2+2HOH
при нагріванні розкладаються : SiH4=Si+2H2
Оксид кремнію SiO2 в природі існує у вигляді кварцу (піску), тримідиту, кристоаліту, а також в аморфному стані (опла, агат). SiO2 – тугоплавкий і хімічно малоактивний, при звичайних температурах. З водою не реагує, свої кислотні властивості проявляє в реакціях з лугами, основними оксидами і деякими солями, які проходять з достатньою швидкістю при підвищених температурах:
2NaOH+SiO2=NaSiO3+HOH
Na2CO3+SiO2=Na2SiO3+CO2
З кислотами SiO2 не реагує, вийняток складає плавикова кислота: SiO2+4HF=SiF4+2H2O.
Кремнієву кислоту можна отримати дією кислоти на розчин Na2SiO3. Якщо розчин достатньо розведений, утвориться золь (колоїдний розчин), при великих концентраціях – гель (студень). Ортокремнієва кислота розчинна у воді, слабка, може існувати в дуже розведених розчинах. При підвищенній концентрації виникає поліконденсація.
Найбільш широко використовуються силікати, виробляють міліони тон різних сілікатних матеріалів, в тому числі цеглу, цемент, фарфор, фаянс, скло та ін. Кварцовий пісок являється основною складовою частиною формувальних сумішей в литниковому виробництві, а “рідке скло” Na2SiO3 – зв’язуючий матеріал в цих сумішах. Кремній є складовою частиною чугунів та сталей, а також ін. сплавів.
Бор.
Бор – єдиний неметалічний елемент 3 групи. Валентність бору частіш за все тільки =3. Бор дає стійки зв’язки з киснем і галогенами. Зв’язки В-В і В-Н менш стійкі. В цьому подібність с кремнієм (діагональна подібність). Дя бору характерний ступінь окислення +3.
Основні його мінерали борати кальцію та магнію, а також бура Na2B4O7 и борна кислота H3BO3.
Бор отримують відновленням B2O3 магнієм:
3Mg+B2O3=3MgO+2B
Крім того, як і для кремнію використовують термічний розклад сполук бору з воднем та йодом.
Бор – полімерна речовина, взвичайних умовах реагує тільки з фтором, при нагрівані з’єднюється з металами, а також з киснем, галогенами та навіть з азотом. З воднем не реагує:
Mg+2B=MgB2
4B+3O2=2B2O3
2B+3Cl2=2BCl3
В сполуках бору з металами переважає металічний зв’язок. Більш активні бориди S –металів, які реагують з кислотами:
3MgB2+6HCl=3MgCl2+B2H6+4b
Найпростішої сполуки ВН3 в звичайних умовах не існує, підлягає димерізації.
Бороводні мало стійкі, при нагіванні легко розкладаються на бор і водень, дуже активні, на повітрі самозагоряються: В2Н6+3О2=В2О3+3Н2О.
Оксид бору має кислотні властивості, з’єднується з водою, утворюючи ортоборну кислоту:
B2O3+3HOH=2H3BO3
Ортоборна кислота розчина у воді. Дуже слабка, тому при дії лугів не утворює солей типу М3ВО3, а утворює солі більш сильної тетроборної кислоти:
2NaOH+4H3BO4=Na2B4O7+7HOH
Тетроборат натрію може далі реагувати з лугами та основними оксидами:
Na2B4O7+2NaOH=HOH+4NaBO2
Na2B4O7+CoO=2NaBO2+Co(BO2)2
При дії на бор азотом або аміаком утворюєтсья нітрид бору BN. Бор використовують як легуючу добавку до сплавів. Бор використовують при пайці та зварюванні.