Загрузить архив: | |
Файл: bbolid.zip (138kb [zip], Скачиваний: 36) скачать |
Министерство образования Российской Федерации
Нижнетагильский государственный педагогический институт
кафедра физики и МПФ
Сикритов А.Н.
Определение коэффициента поверхностного натяжения методом компенсации давления Лапласа
Выпускная квалификационная работа по физике
Научный руководитель:
доцент кафедры
физики и МПФ
Колесников Н.И.
Рецензент:
Допуск к защите учитель физики
зав. кафедры I категории школы №25
физики и МПФ Бабайлова Н.И.
______________
Фискинд Е.Э.
“___” ______ 200г.
Нижний Тагил
2002
Содержание
TOC o "1-2" Введение....................................................................................... [1] с окружающими их (в пределах объёма молекулярного действия) молекулами приводит, как известно, к представлениюо наличии тангенциальных и нормальных относительно поверхности раздела фаз сил, действующих на молекулы переходного слоя [2]. Это – силы поверхностного межфазового натяжения и молекулярного давления.
Обе эти категории сил, действующих на молекулы, которые находятся на различных расстояниях от поверхности раздела фаз, не одинаковы по величине: они монотонно убывают в обоих направлениях по нормали к нормали раздела фаз.
Рис. 4. К расчёту равнодействующей молекулярных сил. |
Газообразная фаза |
Жидкая фаза |
Рис. 3. Прохождение молекулы через поверхность раздела фаз |
r |
2r |
40 |
20 |
Рис. 5. Зависимость объёма шарового сегмента от его высоты |
Таким образом, во время перехода молекулы через фазовую границу равнодействующая молекулярных сил изменяется пропорционально объёму шарового сегмента
(2)
где h – высота сегмента. На рис. 5 приведена зависимость w=j(h); геометрический смысл она имеет в пределах значений h от нуля до 2r. На рис. 6 представлено изменение величины силы, действующей на молекулу при прохождении ею фазовой границы; за начало отчётов принята плоскость ОВ (рис. 3), положение молекулы определяется координатой z. Из рисунка видно, что кривая имеет максимум, соответствующей нахождению молекулы на границе фаз. Зависимость f=y(z) в равной мере относится как к поверхностному натяжению, так и к молекулярному давлению. Таким образом, s=y(z) и pm=y(z) [12].
fмакс |
r |
2r |
z |
Рис. 6. Изменение силы, действующей со стороны жидкости на молекулу при её прохождении через фазовую поверхность |
Что касается молекулярного давления, то ввиду наличия зависимости pm=y(z) его величину также следует представлять себе как результат суммирования элементарных сил по толщине r от переходного слоя [1].
До последнего времени не было найдено метода измерения молекулярного давления. Решение этой задачи встречает большие трудности, так как молекулярное давление по его происхождению связано с взаимодействиями молекул переходного слоя чрезвычайно малой толщины (~10-7 см) по всей поверхности фазы. Молекулярное давление доступно, однако, вычислению:
(3)
где pBH – внешнее давление, I – механический эквивалент, Ср и Сu - молярные теплоёмкости при постоянном давлении и объёме, g - термический коэффициент объёма u. Величина pm может быть также вычислена на основании уравнения Ван-дер-Ваальса, если известны его константы.
Изменение молекулярного давления для жидкостей и твёрдых тел охватывает три порядка: 10-3¸10-5 атм. Индивидуальные вариации величины pm являются прямым следствием индивидуальных различий атомных и молекулярных структур вещества. Поэтому молекулярное давление может служить надёжным критерием интенсивности молекулярного взаимодействия.
Если известна зависимость f=y(z), то можно подсчитать работу выхода молекулы на поверхность фазы. Максимальная работа выхода [14]:
(4)
Таким образом, увеличение поверхности связано с затратой работы; при сжатии поверхность сама совершает работу. Из этих термодинамических предпосылок и вытекает представление о поверхностном натяжении как тангенциальных силах, совершающих работу при изменении величины поверхности. Для фазовых поверхностей, имеющих кривизну, ещё Лапласом было введено представление о капиллярном дополнительном давлении р как тангенциальных силах, действующих на поверхностный слой фазы таким образом, что их результирующая направлена к центрам кривизны поверхности [14]:
(5)
Действительно, наблюдаемые на опыте поверхностные явления протекают таким образом, как если бы поверхность находилась в состоянии квазиупругого натяжения. Такое представление весьма наглядно и облегчает решение многих задач.
Однако никакой действительной аналогии между поверхностным и упругим натяжением не существует, так как закон Гука по отношению к поверхностному натяжению не выполняется: величина деформации поверхности не зависит от s, которое в изометрических условиях изометрической величины поверхности остаётся постоянным.
К сожалению общепринятой теории возникновения поверхностных сил не существует. Имеющиеся точки зрения сводятся к следующим:
1) Выдвигается гипотеза, утверждающая, что межмолекулярные взаимодействия благодаря особой ориентации как самих молекул в поверхностном слое, так и их полей осуществляются преимущественно в направлении, тангенциальном к поверхности. Благодаря такой особой структуре поверхностного слоя возникают силы поверхностного натяжения. Иначе говоря, согласно этой точки зрения существует особая анизотропия молекулярных сил в поверхностном слое, а происхождение этих сил может быть связано с лондоновским (обменным) взаимодействием ван-дер-ваальсового типа.
2) Падение давления в жидкости по толщине поверхностного слоя при постоянном переходе от жидкости к пару, численно равное свободной поверхностной энергии, служит причиной поверхностного натяжения (Беккер) [2].
Обе эти точки зрения при их развитии наталкиваются на серьёзные трудности.
3) Н. Адам, наконец, считает, что понятие поверхностного натяжения имеет смысл лишь математического эквивалента поверхностной энергии [2]. Введение понятия поверхностного натяжения он сопоставляет с принципом возможных перемещений в статике, как чисто математическим приёмом. Так как наличие свободной энергии поверхности может быть объяснено молекулярным давлением, то, по Адаму, нет надобности задаваться вопросом, каким образом это приводит к возникновению тангенциальных сил поверхностного натяжения.
Эта точка зрения не даёт, однако, оснований отрицать, как это делает Адам, физическую реальность поверхностного натяжения.
Таким образом, подводя итоги, можно лишь сказать, что ясности в вопросе о происхождении поверхностного натяжения в настоящее время нет и что этот вопрос нуждается в теоретической разработке [16].
Снова получают сплошную плёнку на проволочном кольце и прорывают её внутри нитяной петельки. Нить растянется и образует правильную окружность (рис. 12, в).
Эти опыты убеждают учащихся в наличии поверхностного натяжения. Кроме того, они показывают, что плёнка изменяется, если ей предоставить возможность, в сторону уменьшения поверхности и, что силы поверхностного натяжения всегда направлены перпендикулярно к любому элементу контура, ограничивающего плёнку.
Демонстрировать описанные опыты удобно в проекции. Для этого рекомендуется установка, схематически изображённая на рис. 13.
2 |
4 |
3 |
1 |
5 |
Рис. 13. Схема установки для проецирования мыльных плёнок: 1 –плёнка, 2 – осветитель с конденсором, 3 – объектив, 4 – экран, картонная ширма. |
Далее надо показать учащимся один из простейших методов определения коэффициента поверхностного натяжения какой-либо жидкости, например мыльного раствора [3]. Для это может быть применён самодельный прибор, изображённый на рис. 14, состоящий из чувствительного пружинного динамометра и подвешенной к нему проволочной П-образной петли шириной 50 мм. динамометр снабжён прозрачной шкалой, изготовленной из органического стекла ил целлулоида, с нанесёнными делениями от 0 до 1 Г, с ценой деления 100 мГ.
Рис. 14. Установка для демонстрации величины
поверхностного натяжения: |
1 |
2 |
3 |
2 |
4 |
3 |
1 |
5 |
Рис. 15. Схема установки для проецирования опыта с динамометром: 1 – динамометр, 2 – осветитель с конденсором, объектив, 4 – экран, 5 – картонная ширма. |
Чтобы не учитывать в дальнейшем вес петли, нужно перед проецированием прибора отвернуть слегка винт а (рис. 16) и, переместив пружину, установить указатель против нуля шкалы.
Рис. 16. Детали установки с чувствительным динамометром. |
а |
Затем подставляют под петлю кристаллизатор с мыльным раствором так, чтобы верхняя сторона петли была погружена в раствор. При опускании кристаллизатора петля затянется сплошной мыльной плёнкой. На пружину будет действовать направленная вниз сила поверхностного натяжения, которую легко определить по показаниям динамометра, заметным для всего класса. А зная силу, например 350 мГ, и длину проволочной перекладины (5 см) легко найти коэффициент поверхностного натяжения:
(1)
Полученная таким образом величина, довольно хорошо соответствует истинному значению коэффициента поверхностного натяжения, на что и следует обратить внимание учащихся.
Перед проецированием динамометра полезно нарисовать схему опыта на классной доске и показать сначала без проекции образование плёнки на П-образной рамке.
Для изготовления чувствительного динамометра, применённого в описанном опыте, очень важно выбрать достаточно тонкую и упругую проволоку. Наиболее подходящей оказалась проволока от спирали малой лабораторной электроплитки. Эту проволоку в количестве 16 витков тщательно навивают на круглый стержень (карандаш) диаметром 8 мм, зажатый предварительно в тиски. Затем пружину снимают со стрежня и придают ей форму и размеры.
Далее вставляют пружину через тонкую металлическую трубку в отверстие стержня с зажимным винтом. Трубка, имеющая узкую прорезь на боковой поверхности для указателя, должна быть заранее припаяна к стержню. За указателем, припаянным к пружине, укреплена тонкая пластинка из органического стекла, на которой наносятся штрихи с помощью острой иглы. Чтобы увеличить видимость, в углубление штрихов полезно втереть графит от обычного карандаша или чёрную тушь.
Градуировка шкалы производится с помощью разновеса: 1 Г, 500 мГ, 200 мГ, 200 мГ и 100 мГ. Таким образом, вся шкала, рассчитанная на 1 Г, имеет 10 делений с ценой каждого деления 100 мГ.
Определение коэффициента поверхностного натяжения жидкости методом капель
Оборудование. 1) Линейка
измерительная. 2) Весы.
3) Разновес. 4) Штатив с муфтами и лапкой. 5) Колба коническая. 6) Стакан
химический 50 см3. 7) Воронка. 8) Кран стеклянный с наконечником
(рис. 17) [4].
Установка, изображённая на рисунке, служит для определения постоянной поверхностного натяжения жидкости методом капель. В качестве исследуемой жидкости удобнее всего взять дистиллированную воду. Работа проводится в такой
Рис. 17. Оборудование к лабораторной работе |
1) При помощи масштабной линейки измеряют диаметр канала стеклянной трубки, причём на глаз отсчитывают десятые доли миллиметра. В таком случае погрешность измерения не будет превышать 0,2 мм.
2) Взвешивают химический стаканчик для собирания капель с точностью до сотых долей грамма.
3) Закрывают кран и наливают воду. Подставляют под трубку колбу и, приоткрывая кран, добиваются, чтобы капли падали достаточно медленно1. Тогда можно считать, что отрывание капель происходит только под действием веса.
После этого под трубку подставляют стаканчик2 и отсчитывают в него несколько десятков капель.
4) Вторично производят взвешивание стаканчика и находят массу воду.
Чтобы получить постоянную поверхностного натяжения, пользуются уравнением
(2)
где М – масса воды, n – число капель, D – диаметр канала трубки, g – ускорение силы тяжести.
Приводим примерные результаты, полученные из опыта:
масса пустого стаканчика М1=22,62±0,01 г,
масса стаканчика с водой М2=30,97±0,01 г,
масса воды М=8,35±0,02 г,
количество капель n=100,
диаметр отверстия трубки D=0,35±0,02 см.
Тогда
»74 дн/см. (3)
Количество капель как результат счёта есть точное число. Если взять p=3,14 и g=981 см/сек2, то относительные погрешности этих величин так же, как и для массы капли, будут слишком малы по сравнению с относительной погрешностью измерения диаметра канала трубки, чтобы заметным образом повлиять на величину относительной погрешности результата. Поэтому можно принять
(4)
следовательно,
Таким образом,
Ds=74×0,06»4,4 дн/см и
s=74±4 дн/см.
Определение поверхностного натяжения при помощи рычага
Для производства работы по этому способу нам понадобится:
1) рычаг, весьма лёгкий и подвижный; 2) гирька в 1 г или заменяющий её грузик, сделанный из жести или проволоки такого же веса; 3) скобочка; 4) стакан; 5) штатив для подвеса рычага [5].
Скобочку мы делаем из звонковой проволоки так, чтобы воздушное расстояние между точками А и F или, что то же самое, между точка В и Е было равно 5 см, а величины АВ и ЕF были около 55 мм. к петле D мы привяжем нитяную петлю, которую будем надевать на рычаг (рис. 18, а).
A |
B |
D |
E |
F |
C |
Рис. 18. |
с |
a |
с |
b |
1 г |
1 г |
а) |
б) |
Допустим, что все скобочки равен Р и поверхностное натяжение жидкости s. Будем помнить, что за линию ВСЕ будут тянуть вниз две жидкие плёнки, следовательно, их сила будет равна 2×5s=10s. Таким образом, мы можем написать два равенства моментов, полагая 1 г=1000 мг.
Равновесие на воздухе Рc=1000а (5)
с плёнкой (Р+10s)=1000b. (6)
Вычитая (2) из (1), мы получим:
10sс=(b-a)1000,
откуда
(в мг/см). (7)
Следует заметить, что употребление кольца вместо скобочки не улучшит, ухудшит точность вычислений, так как при вытягивании кольца из жидкости образуется не цилиндр, что было бы удобно для расчёта, а некоторая конусообразная поверхность. Последнее происходит по той причине, что поверхность плёнки имеет стремление сократиться. Скобка, побывавшая в одной жидкости, должна быть хорошо отмыта для употребления в другой, иначе она, растворив своё содержимое, исказит значение s у другой жидкости.
Несомненно, что вычисление можно проделать и с другими плечами a, b и с.
Определение поверхностного натяжения при помощи динамометра
Данную работу можно провести с динамометром типа весов Жоли или подобным им по чувствительности.
Такой динамометр можно изготовить самим.
На доске размерами 5 см ´ 10 см укрепляем пружинку из жёсткой проволоки диаметром 0,4 мм, с числом витков около 10. К петле свободного усика пружинки привязываем нить с лёгким крюком. Около того места, где находится конец усика, врезаем узенькую зеркальную полоску 1 см ширины. Такой динамометр даёт величину шкалы около 1200 или 1300 мГ с достаточно одинаковыми делениями по 50 Мг.
Работа проводится по тому же методу, что и с весами Жоли.
Наш динамометр мы зажимаем в лапку штатива, вешаем на него скобочку и отмечаем её вес Р1. Затем подносим стакан с жидкостью так, чтобы скобочка погрузилась, и начинаем отпускать его до момента образования плёнки. Отмечая новую тягу Р2, мы найдём для поверхностного натяжения s значение:
(8)
[2] Плёнка легко разрывается при прикосновении к её поверхности нагретым концом проволоки.
1 Около 30-40 капель в минуту.
2 Стаканчик необходимо поставить на горлышко колбы.