Загрузить архив: | |
Файл: ref-15783.zip (545kb [zip], Скачиваний: 88) скачать |
Введение
В 1987 г. Группа Гартнера (Gartner Group), американская организация по исследованию проблем бизнеса, опубликовала результаты своего исследования большого числа фирм. Она установила, что в организациях в течение года перемещается приблизительно 22,5% , а в крупных финансовых организациях в центре города до 200...400% всех работающих [2]. При этом переместить с места на место пользователя компьютера стоит 1500 $, а телефона - 300 $ [1]. Столь существенная разница объясняется тем, что куда бы работник ни переместился, телефонную розетку он находит тут же на новом месте, а пользователю компьютера приходится вызывать бригаду монтажников, которая несколько часов прокладывает специальный кабель и устанавливает специальные розетки.
И если Вы не имеете кабельной проводки для ЛВС, аналогичной телефонной, то в год теряется 0,225 *N* 1500$, где N - число пользователей.
Действительно, сегодня в здании требуют прокладки кабеля следующие системы:
Структурный подход, используемый сейчас большинством системных интеграторов, заключается в создании инфраструктуры ИНТЕЛЕКТУАЛЬНОГО ЗДАНИЯ на базе структурированных кабельных сетей (СКС). При этом сначала проектируется и строится СКС - здание, а затем на структурированную кабельную систему замыкаются необходимые заказчику функциональные системы. Более рациональным является функциональный подход. Существует список потребностей или пожеланий заказчика и основной задачей разработчика в этом случае является интеграция этих систем в единый "организм" в соответствии с заданной заказчиком моделью.
Вместе с тем ИНТЕЛЕКТУАЛЬНОЕ ЗДАНИЕ можно интерпретировать как "разумно построенное". Это означает, что здание должно быть спроектировано так, что все сервисы могли бы интегрироваться друг с другом с минимальными затратами (с точки зрения финансов, времени и трудоемкости), а их обслуживание было бы организовано оптимальным образом. Кроме того, процедура изменений подразумевает также добавление новых сервисов и служб по мере их возникновения.
Применение принципа интеграции позволяет получить существенные технологические преимущества:
возможность добавления новых функций, не доступных в случае применения автономных систем;
описание текущей ситуации полное, что позволяет проводить более качественный анализ;
труд диспетчера систем жизнеобеспечения становится более интеллектуальным.
Таким образом, структурированная кабельная система - это настоятельная потребность сегодняшнего дня.
1. Общие сведения по СКС.
1.1 Возникновение.
С начала 90-х годов получил развитие новый вид промышленной продукции - структурированные кабельные системы (СКС). Их начали выпускать многие электронные, коммуникационные и электротехнические компании. Появились фирмы, производящие соединители, кабели, различные приспособления, конструкционные устройства и аксессуары.
Возникновение кабельных систем относят к 1984--86 гг. Значительный прорыв в этой области произошел после принятия в 1991 г. стандарта EIA/TIA-568 и сопутствующих ему документов. В них получили отражение различные возможности СКС, и последующее развитие стандартов направлено на определение рекомендаций по расширению номенклатуры проводки на медных парах и волоконно-оптических кабелях, интеллектуальной управляемости структуры и возможности получения необходимой полосы пропускания среды для мультимедийных приложений со скоростью передачи данных в линиях вплоть до 1 Гбит/с.
Распространение СКС - тенденция, оказавшая заметное влияние на практику инсталляций кабельных систем. В СКС входят: концентраторы, панели переключений, стойки, розетки и другие элементы, позволяющие построить цельную сеть, и получить четкую документацию, упрощающую управление, и тем сокращающую время простоя сети, а также реконфигурирование (без переделки существующей проводки) и сопровождение системы.
Принятые принципы архитектурной организации структурированных кабельных систем определили их универсальность, отвечающую самым взыскательным требованиям. Широкая номенклатура и высокое качество изделий предопределили высокую популярность СКС. Они используются не только при разводке силовых электролиний и модернизации внутренней телефонной сети, но и при построении коммуникаций систем автоматизации и управления технологическим оборудованием, прокладке линий охранно-пожарной сигнализации, компьютерных сетей и информационных систем, включая системы голосовой и видео связи, передачи компьютерных данных, охранного и промышленного телевидения и т.д. [8].
1.2 Определение структурированной кабельной системы.
Структурированной кабельной системой (СКС) называется кабельная система:
использующая стандартизованные элементы (кабели, разъемы, коммутационные устройства и т.п.),
обеспечивающая стандартизованные параметры (скорость передачи данных, затухание и проч.),
Кабельную систему, не обладающую хотя бы одним из перечисленных свойств, будем называть исключительной кабельной системой (ИКС) (в смысле ее единственности в своем роде).
В англоязычной литературе для СКС используют термины "generic" (универсальная) и "structured" (структурированная), а для ИКС используется слово "proprietary" (частная) [5].
1.3 Преимущества структурированных кабельных систем.
СКС перед ИКС имеют, в основном, следующие преимущества [3]:
высокую адаптивную способность к изменениям внешних условий ("гибкость"): действительно, без изменений в пространстве, без перекладки кабелей СКС легко приспосабливается:
к передислокации сотрудников и подразделений (например, банк "BARKLAYS BANK", обладая СКС, переместил за субботу и воскресенье в новое помещение 590 сотрудников, которые в понедельник продолжили работу без проблем [3]). Заметим, что даже при наличии СКС стоимость перемещения одного терминала равна 750 $ [6];
к смене типов оборудования и, следовательно, к смене его поставщиков (заметим, что оборудование обновляется в компьютерной области примерно за три года), а независимость от конкретных поставщиков всегда полезна.
высокую экономичность по критерию "затраты - эффективность". С определенного момента затраты на поддержание ИКС значительно превышают аналогичные для СКС. При реальном сроке окупаемости СКС в 3...5 лет "цена владения" ею оказывается существенно меньшей, чем для ИКС.
1.4 Развитие и стандартизация структурированных кабельных систем.
Необходимость объединения компьютеров на заре развития ЛВС привела к тому, что кабельные сети с заданными свойствами начинали создавать компьютерные (IBM и др.) компании, используя различные по типам и характеристикам элементы (кабели, коннекторы и т.п.) и, как правило, собственной разработки. Такая ситуация не могла продолжаться долго и очень скоро возникла потребность в СТАНДАРТИЗАЦИИ кабельных систем и их компонентов.
В период с 1986 по 1991 г. были разработаны и использовались, например, стандарт IBM, предусматривавший 9 типов кабелей, или система "уровней" кабелей лаборатории "Underwriters Labs", включавшая пять уровней кабелей по электромагнитным характеристикам.
Проблемы телекоммуникационных и компьютерных компаний, обусловленные отсутствием стандартов, продолжали нарастать, и тогда американская ассоциация Computer Communication Industry Association (CCIA) заказала у ассоциации Electronic Industry Association (EIA) разработку основополагающего стандарта. В итоге в июле 1991 г. появился первый в США (и мире) стандарт на телекоммуникационную проводку в коммерческих зданиях: "Commercial Building Telecommunication Standard EIA/TIA - 568". Совершенствование такого рода документов продолжалось и возникали новые. Некоторые известные на сегодня документы, регламентирующие создание СКС, представлены в таблице 2.4. К сожалению, в России сегодня нет национального стандарта, аналогичного упомянутым, и следует опираться на стандарты ISO при разработке СКС и, в частности, на основной стандарт ISO/EEC 11801:1995 (Е), который подробно рассматривается ниже.
Таблица 2.4 Некоторые документы, регламентирующие создание СКС (по состоянию на 1997г)
1.5 Международный стандарт ISO/IEC 11801 "Информационная технология - Универсальная Кабельная Система для зданий и территории заказчика"
В 1995 г. Международная организация по стандартизации (ISO) и Международная электротехническая комиссия (IEC), имеющие объединенный технический комитет #1 (JTC 1), в котором есть подкомитет 25 (SC 25), а в нем - рабочая группа #3 (WG 3), выпустили стандарт [7], полное наименование которого записывается следующим образом: International Standard ISO/IEC JTC1/SC25/WG3/11801 "Information Technology -Generic Cabling for Customer Premises".
Достаточное для правильных ссылок его наименование имеет вид: Стандарт ISO/IEC 11801:1995 (Е), а жаргонное наименование - Стандарт 11801.
Стандарт содержит 105 страниц текста, 35 рисунков, 38 таблиц и состоит из Предисловия, Введения, 11 разделов и 9 приложений, 6 из которых предназначены только для информации.
Стандарт предполагает, что универсальная кабельная система, им определенная, будет иметь "силу" в течение 10 лет.
пользователей - независимой от применений универсальной кабельной системой и открытым рынком ее компонент;
пользователей - гибкой кабельной схемой, так что модификации ее легки и экономичны;
стандартизаторов в промышленности и применениях - кабельной системой, которая поддерживает выпускаемые изделия и обеспечивает основу для разработки будущих изделий.
Стандарт ISO/IEC 11801:1995 (Е) определяет универсальную кабельную систему для использования внутри коммерческих территорий, которые могут содержать одно или несколько строений на участке.
Стандарт оптимален для участков, имеющих географический размах до 3000 м, офисную площадь - до 1 000 000 кв.м и "население" - от 50 до 50 000 чел. Рекомендуется, чтобы принципы этого стандарта применялись к инсталляциям, не выпадающим из этих рамок.
Структурированная кабельная система, определенная этим стандартом, поддерживает широкий диапазон систем, обрабатывающих голос, цифровые данные, текст, изображение и видеоинформацию.
Стандарт определяет следующие основные крупные группы требований к СКС:
требования к характеристикам отдельных линий кабельной системы,
процедуры контроля (поверки) и требования соответствия конкретной СКС данному стандарту. Ниже некоторые требования рассмотрены более подробно.
1.6 Структура СКС.
Функциональные элементы
Обобщенная кабельная система включает в себя следующие функциональные элементы:
Главный Распределительный Пункт (ГРП)
Магистральный кабель территории
Распределительный Пункт Здания (РПЗ)
Магистральный кабель здания
Распределительный Пункт Этажа (РПЭ)
Горизонтальный кабель
Точка перехода (ТП)
Телекоммуникационный Разъем (ТР)
Группы этих элементов объединяются в кабельные подсистемы.
Кабельные подсистемы
Обобщенная кабельная подсистема состоит из трех кабельных подсистем:
Магистральная подсистема территории
Магистральная подсистема здания
Горизонтальная подсистема
Объединение трех кабельных подсистем формирует структуру обобщенной сети.
Магистральная кабельная система территории простирается от главного распределительного пункта до распределительных пунктов здания, обычно расположенных в разных зданиях. Система состоит из: магистральных кабелей территории, механического окончания кабелей (в главном распределительном пункте и в распределительных пунктах этажа), кроссовых соединений в главном распределительном пункте. Кабели системы могут соединять распределительные пункты здания между собой
Магистральная кабельная система здания простирается от распределительного пункта здания до распределительных пунктов этажа. Система состоит из: магистральных кабелей здания, механического окончания кабелей (в распределительном пункте здания и в распределительных пунктах этажа), кроссовых соединений в распределительном пункте здания. Кабели системы не могут иметь точек перехода, а медные кабели выполняются без сращивания.
Горизонтальная кабельная подсистема простирается от распределительного пункта этажа до телекоммуникационных разъемов на рабочих местах. Горизонтальная подсистема включает горизонтальные кабели, механическое окончание кабелей (разъемы) в РП этажа, коммутационные соединения в РП этажа и телекоммуникационные разъемы. В горизонтальных кабелях не допускается разрывов. При необходимости допускается одна точка перехода. Все пары и волокна телекоммуникационного разъема должны быть подключены. Телекоммуникационные разъемы не являются точками администрирования. Не допускается включения активных элементов и адаптеров в состав СКС. Обобщенная кабельная система показана на рисунке.
<
>
Кабельная система рабочего места соединяет телекоммуникационный разъем рабочего места с терминальным оборудованием. Кабели этой системы не входят в круг требований стандарта, хотя стандарт специфицирует их предельную длину и рабочие характеристики [8].
1.7 Общая структура СКС
Обобщенная кабельная система имеет структуру иерархической звезды, которая может принимать форму, изображенную на рисунке ниже.
<
>
Количество и тип подсистем, включенных в систему, зависит от географии и размеров территории предприятия, а также от стратегии пользователя. Например для территории, включающей только одно здание, центральной точкой является распределительный пункт здания, и отпадает необходимость в магистральной подсистеме территории. С другой стороны, большое здание может рассматриваться как территория с главным распределительным пунктом и распределительными пунктами зданий.
Для некоторых прикладных систем дополнительные соединения между распределительными пунктами здания и этажа допустимы и желательны. Кабели магистральной подсистемы здания могут обеспечивать такие соединения. Однако эти соединения будут избыточными по отношению к рекомендованной базовой структуре.
Функции распределительных пунктов разного типа могут быть объединены в одном. На рисунке изображен пример.
<
>
В здании на переднем плане каждый тип распределительного пункта изображен отдельно. В здании на заднем плане показан распределительный пункт, соединяющий в себе функции пункта здания и пункта этажа [8].
Размещение распределительных пунктов
Распределительные пункты размещаются в шкафах оборудования или помещениях оборудования. На рисунке ниже показано типичное размещение функциональных элементов. Для прокладки кабелей используются подходящие элементы конструкции здания, такие как воздуховоды, тоннели, кабельные лотки, и т. д.
<
>
1.8 Интерфейсные места кабельной системы
Интерфейсные места обобщенной кабельной системы размещаются на концах каждой подсистемы. В этих точках возможно подключение оборудования прикладных систем. На рисунке изображены потенциальные места распределительных пунктов для подключения оборудования.
<
>
К распределительному пункту может быть подключен кабель связи с внешними службами, для подключения оборудования может использоваться как соединение через кросс, так и непосредственное соединение.
Расстояние от внешних служб до главного распределительного пункта имеет решающее значение. Характеристики кабеля между двумя точками должны быть тщательно продуманы и реализованы со стороны пользовательских приложений.
1.9 Интерфейс глобальных сетей
Интерфейс глобальных сетей представляет собой точку подключения к глобальным телекоммуникационным службам. Размещение этой точки, а также требования к необходимому оборудованию могут быть предметом обсуждения национальных, региональных и локальных нормативных документов. Если интерфейс глобальной сети не подключен непосредственно к интерфейсу обобщенной сети, характеристики промежуточного кабеля должны быть приняты во внимание. Тип кроссового соединения и промежуточного кабеля может регулироваться национальными правилами. Эти правила должны быть учтены при проектировании сети.
1.10 Количества и конфигурация оборудования.
На каждые 1000 квадратных метров обслуживаемого пространства должен быть как минимум один распределительный пункт. Как минимум один распределительный пункт должен быть организован на каждом этаже. Если этаж имеет мало рабочих мест (например, вестибюль), он может обслуживаться распределительным пунктом смежного этажа.
В таблице ниже приведены общие рекомендации по выбору типа носителя сигнала при проектировании кабельной системы.
Подсистема |
Тип носителя сигнала |
Рекомендуемое использование |
Горизонтальные кабели |
Сбалансированные кабели |
Голос, данные (1) |
Оптоволокно |
Данные (1) |
|
Магистральные кабели |
Сбалансированные кабели |
Голос и низкоскоростная среда для передачи данных |
Оптоволокно |
Высокоскоростная среда для передачи данных |
|
Магистральные кабели территории |
Оптоволокно |
Для большинства приложений. Использование оптоволокна решает многие проблемы, связанные с источниками помех. |
Сбалансированные кабели |
При необходимости (2) |
|
(1) При определенных условиях (соображения безопасности, условия среды и т.д.) может рассматриваться использование оптоволокна для горизонтальных кабелей
(2) Сбалансированные кабели можно использовать магистральной подсистеме территории, если широкая полоса пропускания, свойственная оптическим кабелям, не требуется. |
Телекоммуникационные разъемы располагаются на стене, на полу или в любой другой области рабочего места. Все зависит от конструкции здания. При проектировании кабельной системы телекоммуникационные разъемы должны размещаться в легкодоступных местах. Высокая плотность размещения разъемов повышает гибкость системы по отношению к изменениям. Во многих странах разъемы устанавливаются из расчета: два разъема на максимум 10 квадратных метров рабочей площади.
Разъемы могут устанавливаться как отдельно, так и в группе, но каждое рабочее место должно быть снабжено минимум двумя разъемами.
Каждый телекоммуникационный разъем должен быть промаркирован постоянной, хорошо заметной для пользователя, этикеткой. Следует обратить внимание на маркировку каждой дуплексной пары: все изменения маркировки должны фиксироваться в документации.
Шкафы оборудования должны обеспечивать все необходимые условия (пространство, питание, условия окружающей среды и т.д.) для пассивных элементов и активного оборудования, установленного в них. Каждый шкаф должен иметь прямой выход на магистральные кабели.
Помещение оборудования представляет собой часть внутреннего пространства здания, где располагается телекоммуникационное оборудование. В помещении может располагаться, а может и не располагаться распределительный пункт. Помещения оборудования отличаются от шкафов, прежде всего типами и сложностью вмещаемого оборудования. В помещении может располагаться более одного распределительного пункта. Пространство, в котором размещено телекоммуникационное оборудование более чем одного распределительного пункта, должно рассматриваться как помещение оборудования.
Кабельный ввод оборудуется для ввода в здание магистральных кабелей, кабелей глобальных и локальных сетей и перехода на кабель для внутренней прокладки. Ввод включает в себя входную точку в стене здания и трассу, ведущую к главному распределительному пункту или пункту этажа. Организация окончания внешнего кабеля может потребовать установки специального оборудования согласно требованиям местных технических норм [8].
1.11 Реализация кабельной системы
Длины смонтированных кабелей магистральной и горизонтальной подсистем не должны превышать предельных значений. Эти значения приведены на рисунке.
<
>
Горизонтальная подсистема
Длина кабелей горизонтальной подсистемы не должны превышать 90 метров. Эта длина представляет собой расстояние, проходимое сигналом от механического окончания кабеля на кроссе распределительного пункта этажа до окончания на телекоммуникационном разъеме рабочего места.
Суммарная длина кабеля рабочего места, кабеля-перемычки и кабеля оборудования не должна превосходить 10 метров. Доля длины каждого кабеля выбирается исходя из конкретной необходимости, но длина кабеля-перемычки не должна превышать 5 метров.
На рисунке ниже представлена модель, используемая для корреляции характеристик кабелей горизонтальной сети с кабелями оборудования [8].
<
>
1.12 Магистральная подсистема
Топология магистральных кабелей может иметь не более двух иерархических уровней. Соблюдение этого требования позволяет снизить ухудшение качества сигнала на пассивных элементах системы и упростить администрирование системы. Сигнал, вышедший из распределительного пункта этажа должен достигать главного распределительного пункта, проходя не более чем один кроссовый узел.
Допускается структура магистральной подсистемы, имеющая только один кроссовый пункт. Магистральные кроссовые пункты должны располагаться в шкафах оборудования или помещениях оборудования.
На рисунке представлены соотношения длин кабелей магистральной подсистемы. Расстояние между главным распределительным пунктом и распределительным пунктом этажа не должно превышать 2000 метров. Расстояние между распределительным пунктом здания и распределительным пунктом этажа не должно превышать 500 метров. При использовании одномодового кабеля максимальное расстояние в 2000 м может быть увеличено. Известно, что характеристики одномодового кабеля позволяют передавать сигнал на расстояние до 60 км. Однако дистанция между главным распределительным пунктом и распределительным пунктом этажа большая чем 3000 м считается выходящей за область применения стандарта.
<
>
Длины кабелей-перемычек, применяемых в главном распределительном пункте и распределительных пунктах здания не должны превышать 20 метров. Избыточная длина перемычек должна быть вычтена из максимальной длины магистрального кабеля [8].
1.13 Классификация прикладных систем и классификация кабельных систем.
Определено 5 классов прикладных систем:
класс A - системы для работы в речевом диапазоне и низкочастотной передачи. Медные кабели, поддерживающие этот класс приложений, входят в класс кабельных систем A.
класс B - системы для среднечастотной передачи. Медные кабели, поддерживающие этот класс приложений, входят в класс кабельных систем В.
класс С - системы для высокочастотной передачи. Медные кабели, поддерживающие этот класс приложений, входят в класс кабельных систем С.
класс D - системы для сверхвысокочастотной передачи. Медные кабели, поддерживающие этот класс приложений, входят в класс кабельных систем D.
класс оптики - системы для высокочастотной и сверхвысокочастотной передачи. Оптоволоконные кабели, поддерживающие этот класс приложений, входят в класс оптоволоконных кабельных систем. Широта полосы пропускания этих систем не является ограничивающим фактором.
Классификация кабельных систем строится на основе полосы пропускания базовой линии кабеля горизонтальной подсистемы. Определено 5 классов:
класс A - пропускает сигнал до 100 Кгц.
класс B - пропускает сигнал до 1 МГц.
класс С - пропускает сигнал до 16 МГц.
класс D - пропускает сигнал до 100 МГц.
Класс оптоволоконных систем - поддерживает приложения, требующие полосы 10 МГц и более.
Характеристики медных кабелей, входящих в классы A, B, C и D, специфицируются так, чтобы они удовлетворяли минимальным требованиям соответствующего класса приложений. Кабель конкретного класса всегда поддерживает приложения более низкого класса. Класс А считается наинизшим.
Параметры оптических кабелей специфицируются отдельно для одномодового и многомодового волокна. Классы C и D соответствуют полной реализации характеристик горизонтальной подсистемы, изготовленной из кабелей 3 и 5 категорий соответственно. Допустимые длины каналов для разных кабельных сред и классов кабельных систем приведены в таблице:
Среда распространения сигнала |
Максимальная длина канала, м |
||||
A |
B |
C |
D |
Оптика |
|
Сбалансированный кабель категории 3 |
2000 |
200 |
100 (1) |
|
|
Сбалансированный кабель категории 5 |
3000 |
260 |
160 (2) |
100 (1) |
|
Сбалансированный кабель, 150 ом |
3000 |
400 |
250 (2) |
150 (2) |
|
Многомодовое волокно |
|
|
|
|
2000 |
Одномодовое волокно |
|
|
|
|
3000 (3) |
|
Основная цель дипломной работы - составить проект структурированной кабельной системы (СКС) для интеллектуального здания газопромыслового управления в поселке Пангоды. Данная СКС должна соответствовать принятым международным стандартам (ANSI/TIA/EIA-568-A и ISO/IEC11801), и обеспечить передачу всех видов информации (данные, голос, видео и т.д.) с учетом перспектив развития современных информационных технологий. Кроме того СКС должна обеспечить интеграцию и работоспособность всех элементов и систем интеллектуального здания.
В частности на базе СКС будет развернута компьютерная и телефонная сети, охранная и пожарная сигнализации, системы оповещения, видеонаблюдения, контроля доступа, бесперебойного питания. В рамках дипломной работы планируется рассмотреть реализацию некоторых из этих систем.
Материалы, положенные в основу разработки проекта:
СКС устанавливается в семиэтажном здании башенного типа (см. рис.), с размерами в плане 24х30 м. Высота этажа составляет 3.5 м, общая толщина перекрытий равна 50 см. На всех этажах здания рабочие помещения имеют разные размеры.
Во всех помещениях здания (кроме помещений цокольного этажа) имеется подвесной потолок с высотой свободного пространства 35 см. Стены помещений изготовлены из обычного кирпича и покрыты штукатуркой, толщина которой составляет 1 см. Строительным проектом предусмотрен вертикальный технологический канал для прокладки кабелей, проходящий через все этажи.
<
. >
Создаваемая СКС должна обеспечить функционирование ЛВС и телефонной сети здания, то есть на каждом рабочем месте монтируется информационная розетка с двумя розеточными модулями. Внутренняя сеть телефонизации и внутренняя компьютерная сеть проектируется как единое целое, как часть СКС. Подсистема рабочего места состоит из необходимого количества универсальных портов RJ-45 и соединительных кабелей для подключения оконечного оборудования.
Общее число рабочих мест, определяется из расчета 5 м2 на одно рабочее место - итого 149 рабочих мест (311 универсальных портов RJ-45, и 3 телефонных RJ-11). В помещениях, в которых располагаются кабинеты руководства, приемные или диспетчерские число рабочих мест определялось исходя из необходимого количества портов, и оно не всегда совпадает с расчетным, так как при расчете по площади в кабинетах руководства и приемных получается чрезмерная избыточность портов, а в диспетчерских возникает недостаточность - из-за потребности в подключении большого количества телефонов. Таблица показывает количество рабочих мест сети передачи данных на каждом этаже здания.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Перечень технических помещений приведен в таблице ниже.
Номер помещения |
Назначение |
Площадь |
13 (цокольный этаж)
а (цокольный этаж)
13 (пятый этаж) |
Щитовая
Помещение АТС
Аппаратная, кроссовая |
18.63
16.23
15.01 |
Общее количество рабочих мест по всем этажам здания указано в Приложении 2.
Чертежи по разводке кабеля, распределению рабочих мест и оборудования СКС находятся в Приложении 3.
Расположение оборудования в коммутационном шкафу показано в Приложении 4.
Спецификация используемого оборудования и материалов находится в Приложении 5.
Подсистема управления максимально унифицирована. Главный кросс располагается на пятом этаже в помещении 13. Детальное описание СКС представлено ниже.
СКС состоит из следующих подсистем:
3.1.1 Подсистема рабочего места
Подсистема рабочего места включает в себя необходимое количество универсальных портов на базе унифицированных разъемов RJ45 и/или оптических соединителей для подключения оконечного оборудования.
Проектом предусмотрено использование следующих конфигураций рабочих мест:
РМ - простое рабочее место, оборудуется двумя розетками RJ-45, двумя розетками бесперебойного и двумя розетками стабилизированного электропитания;
РМР - рабочее место руководителя, оборудуется четырьмя розетками RJ-45, двумя розетками бесперебойного и двумя розетками стабилизированного электропитания;
Т - рабочее место, оборудуется наружной телефонной розеткой с разъемом RJ-11;
К - рабочее место, оборудуется наружной компьютерной розеткой с разъемом RJ-45.
Количество рабочих мест взято из расчета 5 м2 площади кабинета на одно рабочее место с учетом спецификации помещения и задания на расстановку рабочих мест. Точка установки рабочего места в процессе эксплуатации может быть без особых затрат передвинута вдоль короба. Для этой цели необходимо оставить у каждой розетки петлю запаса кабеля около 1м
3.1.2 Горизонтальная подсистема
Горизонтальная подсистема обеспечивает соединение рабочих мест с кроссовым оборудованием, установленным в стандартном 19" монтажном шкафу (главный кросс). Выполнена 4-х парным кабелем типа "неэкранированная витая пара" категории 5, со следующими характеристиками [9]:
Емкость 4.59 нФ/100 м на частоте 1 кГц
В таблице представлены характеристики 4-х парного кабеля типа UTP 5-ой категории по затуханию, перекрестным наводкам и импедансу.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Все кабельное и кроссовое оборудование, применяемое в проекте, удовлетворяет требованиям 5 категории международного стандарта EIA/TIA-568A, а также требованиям Underwriters Laboratories (UL) США по электробезопасности и техническим характеристикам.
Требуемое количество кабеля рассчитывается с использованием следующего эмпирического метода [10]. Исходя из предположения, что рабочие места распределены по обслуживаемой площади равномерно, вычисляется средняя длина (Lcp) кабельных трасс по формуле:
Lcp =(Lmax+Lmin)/2
где Lmin и Lmax - соответственно длины кабельной трассы от точки размещения кроссового оборудования до информационного разъема самого близкого и самого далекого рабочего места, посчитанные с учетом технологии прокладки кабеля, всех спусков, подъемов, поворотов и особенностей здания. При определении длины трасс необходимо добавить технологический запас величиной 10% от Lcp и запас Х для процедур разводки кабеля в распределительном узле и информационном разъеме; так что длина трасс L составит:
L= (1,1Lcp+X)*N где N - количество розеток на этаже.
Рассчитаем количество кабеля, необходимое для каждого этажа, и просуммируем. Дробные значения округляем до целых.
Для цокольного этажа Lmin и Lmax равны соответственно 29 и 45метров.
Lcp = (29+45)/2 = 37 м.
L = (1,1*37+2)*7= 299 м.
Для первого этажа Lmin = 23 м.; Lmax = 60 м.
Lcp = (23+60)/ 2= 42 м.
L = (1,1*42+2)*21 = 1012 м.
Для второго этажа Lmin = 24 м.; Lmax = 69 м.
Lcp = (24+69)/ 2= 47 м.
L = (1,1*47+2)*54 = 2900 м.
Для третьего этажа Lmin = 11 м.; Lmax = 21 м.
Lcp = (11+21)/ 2= 16 м.
L = (1,1*16+2)*20 = 392 м.
Для четвертого этажа Lmin = 6 м.; Lmax = 38 м.
Lcp = (6+38)/ 2= 22 м.
L = (1,1*22+2)*68 = 1782 м.
Для пятого этажа Lmin = 6 м.; Lmax = 30 м.
Lcp = (6+30)/ 2= 13 м.
L = (1,1*13+2)*66 = 1076 м.
Для шестого этажа Lmin = 7 м.; Lmax = 35 м.
Lcp = (7+35)/ 2= 21 м.
L = (1,1*21+2)*68 = 1707 м.
Итого для горизонтальной подсистемы необходимо:
Lобщ = 299+1012+47+2900+392+1782+1076+1707 = 9215 метров кабеля.
Известно, что в бухте 305 метров кабеля. Тогда для создания горизонтальной подсистемы необходима 31 (9215/305=30,21) бухта, или 9455 метров кабеля (31*305=9455).
Прокладка кабелей горизонтальной подсистемы на этажах за подвесным потолком осуществляется в коробе и ПВХ- трубе:
вертикальный стояк - металлический короб 100х60мм;
горизонтальная прокладка (за подвесным потолком по стене):
труба П/Э 40 мм - 1 шт на каждые20 кабелей UTP;
труба ПВХ 25 мм - для кабелей ВВГ
металлический короб 100х60мм - для соединения вертикального стояка с аппаратной на пятом этаже;
спуски к рабочим местам - две трубы ПВХ 20мм в штробе до каждого рабочего места на расстоянии не менее 15 см друг от друга.
Необходимое количество коробов и труб мною рассчитано по рабочим чертежам, и представлено в Приложении 5.
Кабеля оконечиваются встраиваемыми в короб розетками RJ-45, способными подключать также телефонные коннекторы RJ-11. Для подключения оборудования рабочих мест СКС укомплектовывается патч-кордами длиной 3 и 5м. Комплектование компьютеров пользователей сетевыми картами данным проектом не рассматривалось и подбирается индивидуально к каждому системному блоку.
Сети бесперебойного и стабилизированного электропитания.
Проектом предусматривается две параллельных сети электропитания:
бесперебойное электропитание системных блоков и мониторов компьютеров для защиты электронных устройств и информации;
стабилизированное электропитание различных электронных устройств, не требующих постоянного или безобрывного электропитания (типа принтеров, ксероксов, факсов), для их защиты от скачков напряжения.
Обе сети разбиты симметрично на группы, в основном по две на этаж, для бесперебойной работы других пользователей при отключении одной группы. Для предотвращения несанкционированного доступа включение или отключение каждой группы предусмотрено из помещения аппаратной (п.13 5 этажа) от основного щита бесперебойного и стабилизированного электропитания, снабженного автоматическими выключателями и устройством защитного отключения.
Разводка осуществляется силовым кабелем ВВГ следующих сечений:
ВВГ 4х25 - для подключения блоков бесперебойного и стабилизированного питания к вводному электрическому щиту и для подключения к этим блокам основного щита бесперебойного и стабилизированного электропитания;
ВВГ 3х2,5 - для подключения групп пользователей от основного щита бесперебойного и стабилизированного электропитания до первого рабочего места в группе;
ВВГ 3х1,5 - для подключения пользователей внутри группы.
Расчет необходимого количества кабеля был произведен аналогично расчету кабеля горизонтальной подсистемы.
Прокладка кабеля ВВГ осуществляется в отдельном коробе.
3.1.3 Вертикальная подсистема.
Вертикальная подсистема позволяет объединять в унифицированную сеть несколько этажей здания. Допускает применение медных витых пар и волоконно-оптического кабеля. Обеспечивает соединение устройств связи и коммутации компьютерной сети.
В данном проекте вертикальная подсистема сведена к минимуму. Состоит из одного оптического патч-корда SX, соединяющего два коммутатора (НР ProCurve Switch 4000M J4121A) через порт Gigabit-SX .
Включает в себя кроссовое оборудование для коммутации сигналов, передаваемых как по медному, так и оптическому кабелю. Подсистема управления включает в себя кроссовое оборудование для коммутации сигналов в главном кроссе.
Коммутация рабочих мест осуществляется при помощи специальных кросс-кабелей между этими панелями на главном кроссе (5 этаж ком. 13). Применение такой схемы обеспечивает более безопасный метод коммутации активного оборудования.
В помещении аппаратной (п.13 5 этажа) устанавливается 19” шкаф, в который вмещается:
14 патч-панелей на 25 портов RJ-45 для расключения внутренней (абонентской) сети;
4 патч-панели на 25 портов RJ-45 для расключения кабелей идущих из кросса АТС;
два коммутатора НР ProCurve Switch 4000M J4121A на 56 портов 10/100 RJ-45;
11 горизонтальных кабельных органайзеров высотой 1U;
2 вертикальных кабельных органайзера;
Для коммутации шкаф укомплектовывается патч-кордами длиной 0,5, 1 и 1,5м.
3.1.5 Подсистема оборудования.
Включает в себя любое активное оборудование систем передачи голоса, данных, видео, контроля за безопасностью, систем пожарной сигнализации и контроля за климатом и отоплением. В качестве устройства связи и коммутации компьютерной сети проектом взято два полнофункциональных модульных коммутатора НР procurve switch 4000m, содержащими каждый по:
48 предустановленных портов 10/100 с автосогласованием, поддерживающих любую комбинацию соединений 10 Мбит/с и 100 Мбит/с без дополнительной настройки;
1 портом Gigabit-SX;
три свободных универсальных слота, допускающих любую комбинацию модулей:
модуль с 8 портами 10/100Base-T,
модуль с 1 портом Gigabit-SX,
модуль с 4 портами 100Base-FX,
модуль с 4 портами 10Base-FL;
Кроме того коммутаторы поддерживают следующие функции:
расширенный мониторинг RMON (4 группы) и RMON (HP Ease);
организация «зеркальных» портов позволяет контролировать любую комбинацию портов с помощью одного зонда RMON;
разделение рабочих групп с помощью брандмауэра IEEE 802.1Q VLAN;
ПО IGMP устраняет нежелательную лавинную маршрутизацию видеотрафика и поддерживает CoS для разнородного IP-трафика.
Для связи коммутаторы укомплектовываются оптическим патч-кордом SX длиной 0,5м.
Сервер локальной компьютерной сети
Проектом предусмотрен сервер HP NetServer LH 6000r D9114AV с одним процессором Pentium® III Xeon 550 МГц /2 Мб. Выбор сервера обусловлен повышенной производительностью системы ввода-вывода, полным набором средств поддержания работоспособности и улучшенными возможностями расширения для наиболее полного удовлетворения всех требований быстро развивающихся корпоративных вычислительных центров. Данный сервер содержит:
256 МБ памяти PC-133 SDRAM;
интегрированный двухканальный контроллер HP NetRAID с 32 Мб кэш-памяти;
интегрированный интерфейс ЛВС 10/100TX;
блоки питания горячей замены и вентиляторы;
встроенные средства дистанционного управления HP Remote Assistant;
ПО HP TopTools for Servers;
ПО HP OpenView ManageX Event Manager;
привод CD-ROM и дисковод.
Кроме этого как опция (в спецификацию проекта не входит) оборудование сервера может быть расширено:
до шести процессоров Intel® Pentium® III Xeon™;
до 8ГБ памяти PC-133 ECC SDRAM;
до 12 жестких дисков горячей замены Ultra2 или Ultra3 SCSI суммарной емкостью до 216 ГБ;
другое оборудование, устанавливаемое в восемь 64-разрядных слотов PCI (слота 66 МГц) и три равноправные шины PCI.
Сервер располагается в помещении аппаратной (п.13 5 этажа) в 19 “ шкафу с запираемой дверью и встроенной охранной и пожарной сигнализацией.
Источник бесперебойного электропитания ИБП
В качестве источника в системе бесперебойного питания проектом предусматривается использование ИБП Summetra 16kVA MasterFrame SY16KI, работающего по топологии «On-Line», двойное преобразование. ИБП отвечает требованиям ГОСТ 27699-88 и ГОСТ Р 50745-95, а производство сертифицировано по стандарту ISO 9001.
Основными задачами ИБП в системе бесперебойного питания являются:
при нарушениях в работе электрической сети, обеспечение электроснабжения ответственных потребителей (информационно-вычислительное, телекоммуникационное и сетевое оборудование) на время, достаточное для корректного ручного или автоматического свертывания работы локальной сети;
возможность контроля и управления со стороны сетевого администратора
повышение качества электрической энергии, получаемой от питающей сети и поступающей к ответственным потребителям;
создание дополнительной развязки электрическая сеть - ответственный потребитель для решения вопросов электрической безопасности.
Для увеличения времени работы от ИБП при пропадании основного электропитания проектом предусматривается дополнительный батарейный корпус Summetra SYXR12B12I (с 12 блоками батарей SYBATT). Расчетное время работы:
при полной нагрузке 12-18 мин;
при средней проектируемой 30-60 мин.
ИБП располагается в помещении щитовой 13.
Источник стабилизированного электропитания ИСП
В качестве источника в системе стабилизированного питания проектом предусматривается использование однофазного стабилизатора переменного напряжения «Штиль» R1600М, работающего по топологии «On-Line».
ИСП производит стабилизацию входного напряжения в пределах 2203В при входных напряжениях 160…265В. Кроме этого в ИСП включен компьютерный интерфейс для контроля и управления со стороны сетевого администратора. ИСП располагается в помещении щитовой 13.
Система контроля микроклимата
Для поддержания технических условий эксплуатации оборудования связи в помещении аппаратной (п.13 5 этажа) устанавливается кондиционер типа PANASONIC CS-A18ВKР new, мощностью охлаждения 5.3кВт и мощностью обогрева 5.7кВт. Кондиционер представляет собой сплит-систему с одним наружным блоком и одним внутренним. При эксплуатации кондиционера необходимо блокировать отверстие вентиляции здания (использовать их как аварийные).
Предназначена для формирования объединенной сети в группе зданий. Может базироваться на медном или оптическом кабеле или их комбинации. Находится на стадии разработки. Для построения магистрали, связывающей ЛВС нового административного здания ГПУ с оборудованием РСПД (старое здание) планируется использовать Radio Ethernet. Как альтернатива рассматривается техническая и экономическая возможность прокладки между зданиями оптоволоконного кабеля. В рамках данной работы внешняя подсистема не рассматривается.
<
>
Архитектура одноточечного управления разработана для максимальной простоты управления. Обеспечивая прямое соединение всех рабочих мест с кроссом в главной аппаратной, она позволяет управлять системой из одной точки, оптимальной для расположения централизованного активного оборудования. Администрирование в одной точке обеспечивает простейшее управление цепями, возможное, благодаря исключению необходимости кроссировки цепей во многих местах. Администрирование из одной точки также обеспечивает возможность подключения пользователей, находящихся в разных частях здания, непосредственно к одному и тому же сегменту сети. Это упрощает управление локальной сетью и снижает трафик на постоянно перегруженных мостах и маршрутизаторах.
Одноточечное администрирование приводит кроме того к снижению денежных затрат по трем причинам. Во-первых, оно исключает необходимость в горизонтальном кроссе, позволяя сэкономить на пассивном оборудовании. Во-вторых, оно позволяет собирать активное оборудование в одном месте, уменьшая количество неиспользуемых портов в системе: таким образом снижается стоимость активного оборудования. В-третьих, эта архитектура упрощает эксплуатацию сети, уменьшая нагрузку на обслуживающий персонал.
3.4 Прокладка абонентских линий.
Трассу прокладки абонентских линий можно подразделить на следующие участки:
Для прокладки кабелей системы СПД и телефонии по коридорам от межэтажных переходов до этажных коммутационных узлов, от коммутационных узлов до ввода кабелей в рабочие комнаты используется требуемое количество (указано в приложении) трубы п/э. Силовые кабели от щитов до места ввода в рабочие помещения прокладываются в отдельных трубах ПВХ.
Кабель-каналы прокладываются по стенам здания путем крепления их шурупами с шагом 1 метр. По периметру рабочих помещений кабель-каналы устанавливаются на высоте 75-80 см. от пола, чуть выше уровня рабочих столов. По вешним стенам здания вдоль окон, кабель-каналы устанавливаются под подоконниками. Для стыковки каналов проложенных вдоль окон и по внутренним стенам рабочих помещений, используются угловые секции кабель-каналов.
3.5 Требования по монтажу кабельной системы.
Монтаж кабельной системы должен производиться в соответствии с требованиями стандартов EIA/TIA-569, Е1АЯ1А-Т8В40, EIA/TIA-RS-455 и выполняться в несколько этапов [11]:
- сверление проходных отверстий;
- монтаж настенных шкафов и коммутационного оборудования;
- установка и разделка розеток;
- разделка кабелей на коммутационных панелях;
3.5.1 Сверление проходных отверстий.
При прокладке кабеля должны быть выполнены следующие общие требования [11]:
затяжки (хомуты) должны затягиваться вручную без использования инструмента;
выдерживать радиус изгиба кабеля не менее 8 диаметров кабеля;
расстояние между поддерживающими кабель элементами не должно превышать 1.5м;
пролеты кабеля между поддерживающими элементами должны иметь видимый провис, что является показателем приемлемого натяжения кабеля;
расстояние до источников дневного света должно быть не менее 120 мм. Если данное требование выполнить невозможно, необходимо использовать металлический трубопровод.
3.6 Система маркировки элементов кабельной системы [9].
Система маркировки кабельной системы разработана в соответствии со стандартом EIA/TIA 606, на основе руководства AT&T SYSTIMAX SCS Administration manual и материалов курсов ND3321 AT&T SYSTIMAX SCS design & Engineering.
Каждый элемент кабельной системы имеет уникальный номер, который состоит из префикса, обозначающего элемент кабельной системы; поля, определяющего местоположение элемента и букв, определяющих систему, к которой относится данный элемент кабельной системы.
Каждый кабель имеет нанесенный с двух сторон уникальный идентификатор, который содержит следующую информацию:
Тип кабеля ( С - 4-х парный кабель UTP; СВ - Магистральный 25-и парный UTP кабель вертикальной проводки), нумерация сквозная.
3.6.2 Идентификатор информационного выхода.
Каждая розетка имеет уникальный идентификатор, который содержит следующую информацию:
Буква, определяющая систему, которую обслуживает кабель D (Data) - сеть передачи данных; V ( Voice ) - телефон. Эта буква вносится в карту учета кабелей горизонтальной подсистемы только после того, как будет определена принадлежность порта к определенной системе.
Примеры обозначения розеток приведены в таблице ниже
|
|
3.6.3 Идентификатор гнезда кросс-панели коммутационного шкафа.
Буквы МС (Main Cross-Connect) для главного кросса, 1C (Intermediate Cross-connect) для этажных промежуточных кроссов;
Двузначное число после номера комнаты - номер 100-парного модуля в коммутационном блоке;
Однозначная цифра после буквы определяет номер в линейке 100-парного модуля;
Однозначная цифра после тире - номер порта активного оборудования;
Двузначная цифра после тире - номер пары подключенного 25-и парного кабеля.
Карточки учета кабелей составляются на основе стандарта TIA/EIA 606 "The Administration Standard for the Telecommunications Infrastructure of Commercial Building", заполняются при инсталляции и дополняются в процессе всего срока эксплуатации кабельной системы.
Карточка составляется для каждого кабеля и содержит идентификатор кабеля, тип кабеля, неподключенные, поврежденные и свободные пары/ жилы кабеля. Дополнительно в карточку заносится информация об общей длине кабеля, выполненных муфтах, трассах прокладки, заземлению. В карточке выполняются записи по каждой паре/жиле в кабеле.
В поле "Тип кабеля" должен быть указан производитель и маркировка производителя. Месяц и год монтажа или сдачи в эксплуатацию могут быть записаны в разделе дополнительной информации.
Поле "Подключение концов кабеля" используется для указания конечной позиции конца каждой пары/жилы или набора пар/жил кабеля. Каждые пара/жила или набор пар/ жил имеют запись по обеим конечным позициям.
В таблице ниже приведена карточка учета медных 4-парных кабелей типа "витая пара" 5-ой категории горизонтальной подсистемы. Пустые строки карточки заполняются по окончании прокладки и монтажа каждого кабеля. Все изменения в карточку вносятся в процессе эксплуатации кабеля на протяжении всего срока службы.
|
C137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
||
|
|
||
|
|
||
|
|
||
|
|
Структурированная кабельная система, являющаяся единой транспортной средой для различных систем и объединяющая в себе ранее разрозненные сети, требует изменения существующих ранее принципов организации эксплуатации и технического обслуживания локальных, телефонных и прочих сетей.
кабельное хозяйство (структурированная кабельная система, система бесперебойного электроснабжения, система заземления);
основное вычислительное оборудование (серверы с дополнительным оборудованием, подключенным к ним);
периферийное активное оборудование (персональные компьютеры, телефонные аппараты и др.).
Основной задачей обслуживающего и ремонтно-технического персонала является устранение возникающих неисправностей в различных подсистемах. Эти функции обычно совмещались с другими обязанностями администратора, что приводило к сложности выполнения ремонтных работ в случае аврала.
В случае инсталляции структурированной кабельной системы высокое качество всех компонентов, тестирование всей кабельной системы на соответствие 5-ой категории после проведения инсталляции сводят к минимуму вероятность возникновения аварии в кабельном хозяйстве. Основные задачи администратора сводятся к выполнению переключений в узлах коммутации и их точному документированию.
Однако работы по проведению текущих переключений и тем более переключений в аварийных ситуациях должны выполняться в строгом согласовании c другими администраторами информационной системы. Поэтому для успешной эксплуатации интегрированной информационной системы, включающей локальные, телефонную сети, а также другие низкоточные и выделенную силовую сети, необходимо создание единой выделенной службы администрирования, включающей в себя:
Основные задачи администратора кабельной системы следующие:
проведение текущих коммутаций интегрированной локальной и телефонной сети;
поддержание технической документации на структурированную кабельную систему в аккуратном состоянии;
эксплуатация выделенной сети электропитания потребителями особой группы первой категории;
Основные задачи администратора телефонной подсистемы:
текущее обслуживание УАТС. Основные задачи сетевого администратора:
администрирование и программирование активного сетевого оборудования;
контроль за состоянием активного сетевого оборудования и каналов передачи данных СПД;
конфигурирование операционной системы и ведение бюджета пользователей;
восстановление и переконфигурация основного вычислительного оборудования после аварии.
Основные задачи группы поддержки конечных пользователей следующие:
инсталляция и настройка периферийного активного оборудования;
определение и устранение неисправностей активного периферийного оборудования;
постройка и сопровождение пользовательских операционных систем.
Основные задачи администратора баз данных и прикладных задач следующие:
Подрядная организация должна выполнять следующие виды работ:
модернизация и развитие всех подсистем интегрированной информационной системы;
консультации и обучение технических специалистов и конечных пользователей.
Администрирование структурированной кабельной системы.
В понятие "администрирование структурированной кабельной системы" включаются следующие виды работ:
установка и подключение активного сетевого оборудования в коммутационных шкафах;
установка и подключение перефирийного оборудования на рабочем месте пользователя;
полный экземпляр на рабочем месте администратора кабельной системы;
рабочие таблицы на месте выполнения работ в главном коммутационном узле.
В процессе эксплуатации должны вноситься изменения во всех трех экземплярах причем рабочие таблицы заполняются непосредственно в процессе выполнения работ, а полные экземпляры изменяются после окончания работ. Все записи выполняются аккуратно и разборчиво и должны отражать текущее состояние коммутационных узлов.
Работы, связанные с изменением трасс прокладки, обнаружением неисправностей и ремонтом кабельного хозяйства и коммутационных элементов, тестированием, измерением и оформлением протоколов измерений, должны выполняться сертифицированными специалистами подрядной сервисной организации.
3.8 Техника безопасности и охрана труда
При выполнении строительно-монтажных работ необходимо строго соблюдать правила техники безопасности, руководствуясь «Правилами по охране труда при работах на кабельных линиях связи и проводного вещания (радиофикации)» ПОТ РО-45-005-95, Москва 1996г.
3.9 Охрана окружающей среды
Кабельные линии электросвязи, электропитания, оборудование связи и другое запроектированное оборудование не являются источниками повышенного электромагнитного излучения, поэтому мероприятия по защите окружающей среды от ЭМИ проектом не предусматриваются.
По окончанию производства работ привести рабочие площадки в порядок, не оставлять после себя мусор, металлолом, масляные пятна и другие загрязнения окружающей среды.
4. Системы интеллектуального здания.
Настоящим проектом предусматривается оснащение здания газопромыслового управления, принадлежащего УКРиОМ Надым-Пур-Тазовского региона ООО "Надымгазпром", следующими системами:
охранной сигнализацией;
системой видеонаблюдения;
системой контроля доступа.
Спецификация оборудования, необходимого для построения данных систем находится в Приложении 6.
4.1 Охранная сигнализация [12].
ОС здания входит в состав интегрированной системы безопасности «Орион» и управляется с пульта контроля и управления "С2000" (далее - пульт), который предназначен для работы в составе системы охранно-пожарной сигнализации для контроля состояния и сбора информации с приборов системы, ведения протокола возникающих в системе событий, индикации тревог, управления взятием на охрану, снятием с охраны, управления системными релейными выходами. Пульт позволяет ограничить доступ к данным функциям с помощью паролей. К пульту подключаются восемь контроллеров "С2000-КДЛ" по двухпроводной линии и релейные модули "С2000-СП1". Приборы и пульт объединяются в систему через двухпроводный интерфейс RS-485 параллельным подключением. В системе пульт занимает место центрального контроллера, собирающего информацию с подключенных приборов и управляющего взятием/снятием шлейфов сигнализации приборов и системными выходами (релейными выходами или выходами "открытый коллектор").
Контроллер двухпроводной линии "С2000-КДЛ" анализирует состояние адресных датчиков и расширителей, передает пульту по интерфейсу информацию о состоянии датчиков и расширителей и позволяет брать их на охрану и снимать с охраны командами пульта. К контроллеру адресно подключаются:
извещатель охранный инфракрасный адресный С2000-ИК;
извещатель охранный поверхностный звуковой адресный С2000-СТ;
адресный расширитель С2000-АР1 с подключенными к нему магнитоконтактными извещателями ИО-102-5 и ИО-102-6, устанавливаемые на окна и двери, и тревожными кнопками извещения о нападении ИО 101-2, устанавливаемые в помещениях 4-го этажа (кабинет главного бухгалтера №8, касса №17) и 3-го этажа (кабинет главного инженера №8, кабинет заместителя по производству №5, приемная №4, кабинет начальника №3, приемная №9).
Помещение кассы защищается:
через адресный расширитель С2000-АР1 магнитоконтактными ИО-102-5 (двери, окно и кассовое окно выдачи на ("открывание");
извещатель охранный инфракрасный адресный С2000-ИК "на проникновение";
извещатель охранный поверхностный звуковой адресный С2000-СТ "на разрушение стекла";
защита от взлома стены оплеткой решетки и дверей проводом НВМ 1х0,2;
кнопка тревожной сигнализации ИО101-2;
ловушкой в виде муляжа банковской упаковки банкнот.
Блок сигнально-пусковой "С2000-СП1" позволяет пульту управлять своими релейными выходами командами по интерфейсу RS-485 и предназначен для организации системных релейных выходов на управление систем оповещения.
4.2 Система видеонаблюдения [13,14].
Система видеонаблюдения предназначена для охранного телевидения внешнего периметра здания; помещения буфета (цокольный этаж); актового зала, приемной и коридора 3 этажа; помещений коридоров и холлов 1 - 6 этажей.
Во внутренних помещениях устанавливаются видеокамеры VIDEOTRONIC KUP-38 с фокусным расстоянием 4,3мм (60о) в коридорах и 2,9 (90о) в холлах и актовом зале. Наружный периметр здания просматривается видеокамерами МВК-16, с небольшими размерами и некритичными к низким температурам (до - 60оС).
Помимо визуального контроля проектом предусмотрена возможность детекции движения и автоматическая запись изображения в режиме охраны с помощью двух комплектов мультиплексоров MV16p и спецвидеомагнитофонов HS-1024E. Для этой цели предусмотрена комплектация системы видеонаблюдения видеокассетами стандарта S-VHS.
Мультиплексор дополнительно позволяет осуществлять одновременное наблюдение в режиме квадратора 4,9 или все 16 либо по одной камере постоянно или с поочередной сменой кадра. Кроме этого мультиплексор позволяет в цифровой обработке увеличивать изображение.
Спецвидеомагнитофон позволяет вести запись и воспроизведение с различными скоростями. Предусмотрена возможность покадрового просмотра записи.
Сигнал видеокамеры из помещения приемной 15 дополнительно дублируется на монитор в кабинете руководителя 16.
Электропитание системы видеонаблюдения осуществляется от резервного источника питания СКАТ-1200У.
4.3 Система контроля доступа [15].
Система контроля доступа предназначена для контроля и ограничения доступа извне в помещение управления и учета рабочего времени сотрудников.
В качестве системы контроля доступа проектом предусматривается система PERCo-S-600, построенная на основе сети контроллеров PERCo-CR-12001H, подключаемых к компьютеру. Связь с контроллерами осуществляется через конвертер интерфейса PERCo-IC-600, который подключается к последовательному порту компьютера (скорость обмена данными 19200 бит/с). Количество контроллеров в системе - 2(максимальное — 64). Длина магистрали — до 1200 м. Сетевое программное обеспечение системы позволяет организовать необходимое количество автоматизированных рабочих мест (отдел кадров, бюро пропусков, администратор, охрана, бюро труда и заработной платы).
В качестве исполнительных устройств в системе используются два турникета PERCo-TTR-04SYSP типа «трипод», оборудованными датчиками прохода и звуковыми оповещателями о нарушении режима ограничения доступа (несанкционированный проход, попытка «взлома» считывателя, предьявление «запрещенной» карты). Кроме этого в турникете предусмотрена возможность механического отключения блокиратора прохода или демонтаж заградительных штанг. В качестве эвакуационного прохода проектом предусматривается использование второй двери, блокируемой электромагнитным замком. Отключение блокировки производится вручную охранником или автоматически при сработке режима «Пожар» автоматической пожарной сигнализации. Пропусками в системе PERCo-S-600 служат ProxCard II (типа HID). Максимальное количество карт в системе может достигать 64 000.
Проектом предусмотрено комплектование системы ламинатором для наклеек на карты доступа. В состав системы входят также ограждения PERCo-MB-02.
Электропитание системы контроля доступа осуществляется от стабилизированного источника питания БИРП 12/2, входящего в состав системы.
4.4 Прокладка слаботочных линий
Прокладывать слаботочные линии кабелей охранной системы, системы видеонаблюдения и системы контроля доступа в монтажных коробах. В местах пересечения силовых и осветительных сетей, в местах прохода проводов и кабелей через стены и междуэтажные перекрытия, кабели и провода шлейфов охранной сигнализации имеют дополнительную изоляцию из полихлорвиниловой трубки, концы которой выступают на 4-5 мм с каждой стороны перехода. Расстояние между проводами и кабелями луча сигнализации и соединительными линиями с осветительными электропроводками и кабелями предусмотрено не менее 0,5 метра.
Для монтажа электропроводок шлейфов и адресных линий охранной системы, кабелей системы контроля доступа внутри защищаемых помещений применить провод марки КСПВ 4х0,5. Система контроля доступа кроме этого комплектуется соединительными шнурами из кабелей марок ТСВ и ШВВШ. Система видеонаблюдения и видеодомофон подключается кабелем SAT-501, состоящем из коаксиального кабеля типа РК-75 и витой пары для подачи питания 12В. Соединения и ответвления проводов производить в специальных коробках, типа УК-2П (или аналогичных), под винт. При подключении к извещателям соединение шлейфа производить на клеммы, встроенные в извещатель.
4.5 Электроснабжение
Электроснабжение системы автоматической охранной сигнализации относится к 1 категории. Рабочее электропитание автоматической охранной сигнализации подключить силовым кабелем КМЖ 3х1,5. В помещении дежурного устанавливается щиток предохранительный ЭЩП-2, на который заводится кабель от электрощита. От щитка до токоприемников электроснабжение осуществляется кабелем ВВГ 3х1,5.
Резервное электропитание осуществляется от встроенного в прибор источника резервного питания и от блоков резервного питания. Комплектация резервированного питания выбрана с учетом непрерывной работы охранной сигнализации при отсутствии постоянного электропитания в дежурном режиме - не менее 24 часов, в тревожном - не менее 3 часов. Все приборы охранной сигнализации следует заземлить на существующий контур заземления к щиту электропитания.
4.6 Меры безопасности
Перед проведением монтажных работ необходимо ознакомиться с технической документацией на систему и на каждое устройство. Перед подключением электропитания должна быть проведена проверка надежности заземления корпусов всех устройств. При монтаже и наладке системы необходимо руководствоваться действующими “Правилами техники безопасности при эксплуатации электроустановок потребителей напряжением до 1000 В” и эксплуатационной документацией на оборудование всей системы автоматической пожарной сигнализации, а также “Правилами техники эксплуатации электроустановок потребителей”. Заземление и зануление оборудования системы автоматической пожарной сигнализации выполнять согласно технической документации заводов-изготовителей. Регламентные работы оборудования системы автоматической пожарной сигнализации выполнять согласно технической документации заводов-изготовителей. Монтажно-наладочные работы следует начинать только после выполнения мероприятий по технике безопасности, согласно СНиП III-4-80, НПБ 88-2001, ППБ 01-93. После окончания монтажных работ и сдачи объектов в эксплуатацию все приборы и оборудование системы должны быть опломбированы. В случае изменения функционального назначения помещений, а также изменения технических характеристик оборудования Заказчику согласовать изменения в проекте.
Настоящим проектом предусматривается обеспечение здания следующими системами:
внутренняя компьютерная сеть и сети бесперебойного и стабилизированного электропитания, объединенные в структурированную кабельную сеть СКС;
Для построения сети передачи данных в проекте применяется топология одноточечного администрирования. Реализована топология типа «звезда» с центром в помещении аппаратной. Для получения наибольшей гибкости использования всей кабельной системы не существует разделения на сеть передачи данных и телефонную. В проекте предоставлены необходимые расчеты и чертежи, спецификация оборудования и материалов, необходимых для построения СКС. Кроме того даны требования по монтажу, рекомендации по администрированию, обслуживанию и эксплуатации системы.
Список использованной литературы:
The Cabletron Systems Guide to Local Area Networking, "Cabletron Systems Ltd.", 1995, s.2, p.3.
Интеллектуальные здания. Проектирование и эксплуатация информационной структуры., пер. с англ., "Сети МП", 1996, с.90.
С.К.Стрижаков, Современные кабельные системы, "PC Magazine/Russian Edition", декабрь 1995, сЛ66.
А.Чернобровцев, Интеллектуальное здание компании "Анкей", "Computer Week-Moscow", 10 июля 1997, N 25(279), с.6.
Structured cabling. Foundation for the future., "ANIXTER Technology White Paper", febr. 1996. p.4.
Handbook of Local Area Networks, ed. J.P. Slone, A.Drinan, Auerbuch Publications, 1991.
Международный стандарт ISO/TEC 11801:1995(E).
http://www.tower.ru
И.Г. Смирнов. «Структурированные кабельные системы». Москва, 1998г
А. Б. Семенов, С. К. Стрижаков, П. А. Самарский. «Структурированная Кабельная Система АйТи-СКС». Москва, 1998г.
А. Б. Семенов, С. К. Стрижаков, И.Р. Сунчелей. «Структурированные Кабельные Системы» Москва, 2001.
60