Загрузить архив: | |
Файл: ref-17673.zip (30kb [zip], Скачиваний: 274) скачать |
МИНИСТЕРСТВО ОБРАЗОВАНИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ
КРАСНОЯРСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ
ЦВЕТНЫХ МЕТАЛЛОВ И ЗОЛОТА
РЕФЕРАТ НА ТЕМУ:
«ДОБЫЧА ЗОЛОТА МЕТОДАМИ
ГЕОТЕХНОЛОГИИ»
Выполнил: Д.А.
TOC o "1-3" 1.ОБЩАЯ ХАРАКТЕРИСТИКАГЕОТЕХНОЛОГИЧЕСКИХ МЕТОДОВ PAGEREF _Toc515626345 h 3
Объекты применения геотехнологии..................................... PAGEREF _Toc515626346 h 3
Преимущества геотехнологии................................................. PAGEREF _Toc515626347 h 3
Экономические показатели...................................................... PAGEREF _Toc515626348 h 4
2.ОБЗОР ТЕХНОЛОГИЧЕСКИХ СПОСОБОВ, ИСПОЛЬЗУЕМЫХ ПРИ КУЧНОМВЫЩЕЛАЧИВАНИИ ЗОЛОТА ИЗ РУД................. PAGEREF _Toc515626349 h 7
Цианидное выщелачивание..................................................... PAGEREF _Toc515626350 h 7
Тиомочевинное (тиокарбамидное) выщелачивание......... PAGEREF _Toc515626351 h 8
Тиосульфатное и аммиачно-тиосульфатноевыщелачивание PAGEREF _Toc515626352 h 10
Окислительное выщелачиваниеминеральными кислотами и солями PAGEREF _Toc515626353 h 10
Бактериальное выщелачивание............................................ PAGEREF _Toc515626354 h 12
Вторичные ионообменные явления в процессах выщелачивания золота PAGEREF _Toc515626355 h 15
Методы извлечения золота из растворови сточных вод PAGEREF _Toc515626356 h 16
Сорбция благородных металлов активными углями..... PAGEREF _Toc515626357 h 16
Извлечение благородных металлов ионообменными смолами и экстрагентами............................................................................ PAGEREF _Toc515626358 h 17
Использование ферритизированных сорбентов................ PAGEREF _Toc515626359 h 19
Электролитическое извлечение золота из растворов..... PAGEREF _Toc515626360 h 19
ЗАКЛЮЧЕНИЕ............................................................................... PAGEREF _Toc515626361 h 21
БИБЛИОГРАФИЧЕСКИЙ СПИСОК.......................................... PAGEREF _Toc515626362 h 22
Геотехнология определяется как метод добычи цветных, редких и благородных металлов путем их избирательного растворения химическими реагентами на месте залегания и последующего извлечения образованных в зоне реакций химических соединений без формирования значительных пустот и массового сдвижения вмещающих пород. К геотехнологии относят также кучное и отвальное выщелачивание металлов, хотя эти методы являются промежуточными между собственно геотехнологическим выщелачиванием – подземным и гидрометаллургическим – чановым.
Геотехнологические методы добычи полезных ископаемых следует рассматривать не как конкурирующие с традиционными, а как дополняющие их. Эти методы целесообразно применять на нерентабельных для подземного и открытого способов объектах: на крупных месторождениях сравнительно бедных руд, где значительный экономический эффект может быть получен за счет масштабности производства; на мелких залежах и рудопроявлениях богатых руд на месторождениях, отработанных традиционными методами, для извлечения полезных компонентов из оставшихся целиков и забалансовых руд; на отвалах забалансовых руд и хвостов обогащения закрытых и действующих горных предприятий.
Наиболее экономичным является подземное скважинное выщелачивание на новых месторождениях, когда проницаемость руды для раствора достаточна и предварительное дробление не требуется. В этом случае отпадает необходимость транспортировки руды от рудника, не нужны хвостохранилища, появляется возможность полной автоматизации процесса, исключается опасный труд человека под землей, резко (примерно в три раза) сокращаются объемы, сроки ввода и освоения промышленных мощностей, не происходит вредных выбросов газов и пыли.
Основной проблемой подземного выщелачивания является обеспечение защиты от проникновения промышленных растворов в подземную гидросеть. В связи с этим требуется тщательное геологическое изучение объекта, особенно в плане тектонических нарушений. При наличии разломов или зон трещиноватости необходимо проведение работ с целью создания искусственных водонепроницаемых экранов путем закачки бетонной смеси в плоские щели, сформированные методом гидроразрыва, который разработан в институте Горного дела СО РАН.
Кучное выщелачивание на специально подготовленных основаниях максимально снижает возможность утечки промышленных растворов. Однако себестоимость готовой продукции становится несколько выше, чем при подземном выщелачивании, но существенно ниже, чем при традиционных методах добычи.
Кучное и, в меньшей степени, подземное выщелачивание давно и широко используются в разных странах (США, Испании, Чили, Чехословакии, Канаде, Мексике, Перу, Замбии, Австралии, ЮАР и др.) для добычи урана, меди, золота и серебра. Известны запатентованные разработки по выщелачиванию свинца, цинка, молибдена, вольфрама, олова, мышьяка, висмута и других металлов. В нашей стране в промышленном масштабе этими методами добывался только уран, а медь, золото и серебро извлекались лишь на опытно-промышленных установках малой производительности. В последние годы, в связи с некоторым подъемом в экономике, интерес промышленников к геотехнологии усилился. Начато внедрение кучного выщелачивания на горнодобывающих предприятиях Рудного Алтая. Планируется использование геотехнологии для добычи золота и меди в Забайкалье. Можно надеяться, что геотехнологические методы найдут применение в России при добыче цветных и благородных металлов.
По оценке американских специалистов капитальные затраты на организацию кучного выщелачивания золотосодержащей руды производительностью 180 т/сут (без учета расходов на горные работы) составляют $ 200 тыс., при этом затраты на цианид натрия не превышают $ 0.15, а потребление электроэнергии – 0.0003 кВт * ч на 1 т руды.
Если расходы на извлечение золота по стандартной технологии (чановое выщелачивание с предварительным перемешиванием, осаждение золота цинковой пылью) принять за единицу, то для геотехнологического варианта (кучное выщелачивание с предварительным дроблением руды, осаждение золота на угле, электролиз) они составят 0.32. Соответствующее соотношение эксплуатационных затрат составляет 1:0.66.
Традиционная технология экономически выгодна, когда содержание золота в руде не менее 1.74 г/т (эта цифра зависит от цены золота на мировом рынке), а кучное выщелачивание – при содержании золота до 0.96 г/т.
На руднике Эберли (США) капитальные вложения на кучное выщелачивание составили $ 600 тыс., а эксплуатационные расходы – 11.5 $/т. Затраты распределяются так:
$/т |
% |
|
Добыча руды (рабочая сила, взрывные работы техн. обслуживание, страхование и прочее) |
2,44 |
21,2 |
Кучное выщелачивание: оплата труда: – рабочих – инженерно-технических работников электроэнергия и топливо реагенты вода техническое обслуживание плата землевладельцу за разработку недр дробление руды и укладка в кучи процесс сорбции золота на угле десорбция золота и электролиз элюата химические анализы отчисления на оборудование |
1,05 0,78 0,77 0,83 0,11 0,48 1,05 0,44 0,26 0,26 0,13 2,90 |
9,14 6,78 6,7 7,22 0,96 4,17 9,15 3,83 2,26 2,26 1,13 25,2 |
Всего |
11,5 |
100,0 |
Таким образом, кучное выщелачивание золота экономичнее традиционных методов добычи по всем показателям.
Технико-экономическая эффективность кучного и сорбционного выщелачивания золота из рудного сырья в зависимости от содержания золота, производительности установки, материала основания под рудный штабель, крупности дробления руды и т.д. приведена в [3] применительно к экономическим условиям России.
Ниже даны два варианта расположения установки для выщелачивания:
– в непосредственной близости от источника сырья (транспортировка руды осуществляется не более чем на 1 км, требуется сооружение хвостохранилища для слива жидких отходов);
– в районе хвостохранилища золотоизвлекательной фабрики (транспортировка руды производится на расстояние до 10 км).
Эффективность кучного выщелачивания рассматривалась для песчано-глинистых и кварц-карбонатных руд с содержанием золота 1.5; 2.0; 2.5 г/т при производительности установки 50, 100 и 200 тыс. т/год.
Известно, что для песчано-глинистых руд, требующих более длительного выщелачивания, целесообразно использовать одноразовые основания – глиняные с пленочным экраном. Для кварцевых руд, цикл обработки которых короче, можно применять бетонные основания. Метод кучного выщелачивания золота оказывается экономически приемлемым даже в случае дробления руды до крупности -5 мм, если содержание золота в руде не ниже 1 г/т и производительность установки не менее 100 тыс. т/год. Кучное выщелачивание следует проводить в непосредственной близости от источника сырья, так как расходы на транспорт превышают затраты на сооружение хвостохранилища. Этими же авторами [3] рассмотрена эффективность кучного выщелачивания золота малотоксичными и нетоксичными, в сравнении с цианидами, растворителями. Показано, что при бактериальном выщелачивании значительный экономический эффект достигается за счет резкого сокращения издержек на обезвреживание жидких отходов.
Золотосодержащие руды, пригодные для переработки методом кучного выщелачивания, разделяют на следующие типы:
1) известковый алеврит с субмикронными частицами золота и примесями пирита, галенита, киновари, стибнита;
2) окремненные алевролиты с микронными частицами золота, часто связанными с остаточными окислами железа;
3) песчаная и доломитовая руда, содержащая золото в межзерновом пространстве;
4) жильная кварцевая руда;
5) изверженные горные породы с небольшими кварцевыми жилами со свободным золотом.
Цианидное выщелачивание на сегодняшний день является основным способом извлечения золота из руд, как в традиционной технологии, так и при геотехнологической добыче. В качестве реагента используются соли циановой кислоты – цианиды натрия или калия концентрацией 0.02–0.3%. Растворение золота происходит по реакции 2Au + 4KCN+ 0/2O2 + Н2O = 2KAu(CN)2 + 2КОН, из которой следует необходимость введения в процесс окислителя – добавок в рабочий раствор перекиси водорода, гипохлоритов калия, натрия и др. В цианистых растворах должно быть обеспечено, кроме того, создание, так называемой, защитной щелочи, уменьшающей разложение цианистых солей. В подземном или кучном выщелачивании для предотвращения кольматационных явлений предпочтительнее использование едких щелочей (КОН или NaOH), не приводящих к увеличению в растворе содержания кальция.
Процесс цианирования золотосодержащих руд и концентратов используется и в традиционной технологии и, соответственно, разносторонне изучен. В частности установлено, что скорость растворения золота может контролироваться либо концентрацией NaCN, либо кислорода; интенсивное пассивирование золота имеет место в присутствии солей свинца; при малых концентрациях (5–25 мг/л) серебро, свинец и ртуть ускоряют растворение золота; в присутствии сульфосолей мышьяка скорость растворения золота резко подавляется.
Интенсификация цианирования может быть достигнута за счет предварительного введения извести и цемента для гранулирования материала; использования концентрированных цианистых растворов, цианида кальция, который дешевле NaCN, комбинированных реагентов (особенно для теллуристых и золотосеребряных руд); введения в раствор некоторых добавок (солей таллия, марганца, высокомолекулярных спиртов и т. д.).
Продолжительность выщелачивания колеблется от 7 до 30 суток для дробленой руды (крупностью менее 20 мм) и до нескольких месяцев для получаемой в результате взрыва.
При всех достоинствах цианистого процесса извлечения золота из руд у него имеется и существенный недостаток – очень высокая токсичность цианистых солей. До сих пор не решена проблема обезвреживания стоков, поэтому уже давно ведется поиск альтернативных реагентов для гидрометаллургической (в том числе и геотехнологической) переработки золотосодержащего сырья.
Возможным заменителем цианистых растворителей золота являются кислые растворы тиомочевины. Впервые предложения об использовании тиокарбамидного выщелачивания для извлечения золота из сурьмянистых руд были высказаны в начале сороковых годов XXвека. Исследования как у нас в стране, так и за рубежом показали следующие преимущества тиомочевинного растворения, по сравнению с цианированием: скорость процесса выше примерно в 10 раз, он менее подвержен воздействию со стороны ионов-примесей, меньше удельный расход и коррозионная активность реагента. Вместе с тем указывались и отрицательные моменты: тиомочевина дороже NaCN на 25%, в окислительных условиях она разлагается, имеются сложности при извлечении золота из тиомочевинных растворов активированным углем.
Тиомочевинная технология перспективна для переработки углеродсодержащих глинистых золотоносных руд, а также мышьяксодержащих. В цианистом процессе серьезные трудности вызывает наличие меди, при тиомочевинном растворении это осложнение частично снимается вследствие значительно меньшей скорости ее разложения, эффективно растворяется золото в кислых растворах в присутствии окислителя. Установлено, что наилучшим из исследованных реагентов является раствор тиомочевины с добавками серной кислоты и трехвалентного железа. При этом окислительно-восстановительный потенциал не может быть ниже 125–130 мВ (из-за осаждения золота) и выше 160–165 мВ (из-за окисления свободной тиомочевины). Стабилизация его в ходе процесса на определенном уровне может осуществляться, например, добавками сернистого газа. Эксперименты показали, что в случае тиомочевинного выщелачивания золото извлекаешься с большей полнотой, чем цианированием: 90 – 97% против 81–92%. Показана возможность использования растворов тиомочевины в замкнутом цикле с концентрацией железа не выше 10–12 г/л.
В результате промышленных испытаний установлено: тиомочевинное выщелачивание золота возможно, причем извлечение его равно или выше, чем при планировании; в случае тонкой вкрапленности золота такое выщелачивание не имеет кинетических преимуществ перед цианированием; тиомочевинная технология может оказаться рентабельной даже с низким извлечением (60%) выщелачивания углеродсодержащих руд, которые невозможно перерабатывать иными способами, она может быть использована для переработки низкосортных золотосодержащих отвалов.
В промышленном масштабе тиомочевина применяется лишь на предприятиях с очень богатым концентратом, что оправдывает затраты на реагент. В России в результате испытаний на опытных установках выявлены недостатки способа: длительность операции закисления, высокий расход кислоты, обогащение продуктивных растворов элементами-примесями и др.
Эксплуатационные затраты при тиокарбамидном выщелачивании в целом примерно на 25% меньше, чем для цианирования за счет существенно (более чем в три раза) меньших затрат на обезвреживание промышленных стоков.
Процессы тиосульфатного и аммиачно-тиосульфатного выщелачивания золота протекают по следующим реакциям:
4Au + O2 + 8S2O32- + 4H+ → 4Au(S2O3) 23- + H2O,
Au + 5S2O32- + Cu(NH3)42+ → Au(S2O3) 23- + 4NH3 + Cu(S2O3)35-
Образующийся тиосульфатный комплекс золота очень прочный (константа диссоциации равна 10-26).
Наличие растворимой меди и сульфидов может замедлить процесс аммиачно-тиосульфатного растворения золота, если не принять специальных мер. В частности, его рекомендуется проводить в слабоокислительной среде.
Аммиачно-тиосульфатное выщелачивание применимо к упорным для цианистого процесса рудам: марганцевым и медистым. Оптимальные условия сохраняются поддержанием в растворе рН на уровне 7–8 ед. Это обеспечивает устойчивость тиосульфат-ионов. Установлено, что при их отсутствии извлечение золота резко падает, кроме того, для повышения скорости реакции рекомендуется вводить в систему элементарную серу. Испытания, проведенные с рудами ряда месторождений США и Мексики, показали, что выщелачивание реагентом, состоящим из смеси тиосульфата и сульфита аммония, обеспечивает извлечение золота в пределах 50 – 96%. Аммиачными тиосульфатными растворами можно добывать золото и серебро из хвостов окислительного выщелачивания в присутствии меди.
Этот способ применим для добычи серебра и, в меньшей степени, золота. Имеется патент на селективное солянокислое выщелачивание золота, серебра, свинца, сурьмы и висмута из арсенатов. Процесс проводят при рН = 1 и с наличием в растворе железа (2–4 г/л).
Для переработки материалов, содержащих благородные металлы, рассмотрена возможность использования гидрохлорирования, имеющего некоторые преимущества, по сравнению с цианистым процессом: большая концентрация окислителя (молекулярный хлор) в растворе обусловливает высокую скорость процесса; возможность получения солянокислых растворов, из которых удобно выделять золото электролизом, переработки ряда упорных для цианирования золотосодержащих материалов, в том числе углистых, медистых, мышьяковистых и других, а также разделения золота и серебра при их осаждении из солянокислых растворов.
Экологически чистый способ извлечения благородных металлов из руд, в том числе карбонатных, включает их обработку водным раствором, содержащим хлоридные и гипохлоридные ионы, восстановление металлов цементацией, регенерацию ионов гипохлорита электрохимическим способом и повторное использование выщелачивающего раствора. Гипохлорирование применяется для предварительной обработки углеродсодержащих золотых руд перед цианированием, чтобы извлечь золото из шлака, обогащенного сурьмой.
В опытно-промышленных масштабах исследовано извлечение золота и серебра из анодных шламов электролиза меди с применением смеси концентрированных кислот: 1 объем азотной и 3 – соляной.
Кроме того, теоретически и экспериментально прорабатываются варианты выщелачивания золота иодидными, тиоцианатными растворами, а также раствором хлорида меди.
В последнее время в США ведутся исследования по сорбционному извлечению золота из пульпы с помощью активного угля, обладающего магнитными свойствами. Этот способ позволяет селективно извлекать золото в присутствии таких примесей как As, Sb и др. Ввиду того, что большинство руд содержит магнетит в количестве 0.2–3%, необходима предварительная магнитная сепарация руды.
Многие из перечисленных методов химического извлечения золота используются только для чанового выщелачивания, поскольку требуют проведения некоторых дополнительных операций.
Существенная интенсификация процесса выщелачивания достигается в присутствии бактерий. Например, тионовые бактерии Thiobacillusferrooxidans могут применяться для выщелачивания меди, никеля, цинка, мышьяка, кадмия, золота и других металлов. В России и Канаде разрабатываются технологии бактериального выщелачивания мышьяка и вскрытия тонковкрапленного золота из упорных золотосодержащих концентратов перед их цианированием. Это позволяет исключить дорогостоящий процесс обжига, загрязняющий атмосферу ядовитыми соединениями мышьяка.
Упорные руды характеризуются тонковкрапленным (субмикроскопическим) трудно вскрываемым золотом, присутствием минералов сурьмы, меди, мышьяка, двухвалентного железа, а также сульфидов и углистых сланцев. Они не перерабатываются обычным цианированием. Для пирротиновых, медистых и сурьмянистых руд рекомендуются добавки PbO2 или Pb(NO3)2, интенсивная аэрация и сравнительно низкая концентрация выщелачивающего раствора NaCN; для углистых руд – многостадийные схемы цианирования с быстрым отделением продуктивных растворов от твердой части пульпы; для сульфидных и мышьяковистых руд – окислительный обжиг, в результате которого плотные зерна сульфидов переводят в пористый гематит
2FeS2 + 2 = Fe2O3 + 4SO2,
2FeAsS + 5O2 = Fe2O3 + As2O3 + 2SO2.
Бактериальное выщелачивание позволяет решить проблему переработки труднообогатимых руд.
Проводится поиск новых видов микроорганизмов, которые способны функционировать не только в кислой, но и в нейтральной и в щелочной средах. Как показали опыты, проведенные в СССР и в Индии, специальное внесение бактерий в рудную массу необязательно. Путем адаптации с использованием различных мутагенных факторов можно получить культуру со свойствами, необходимыми для ее промышленного применения.
Пионерами исследований по бактериальному выщелачиванию золота были институт Пастера (Франция) и университет г. Дакар (Сенегал). Информация об этих работах появилась в печати в 60-х годах XX века.
Бактериальные методы извлечения золота из руд базируются на результатах изучения микрофлоры крупных золоторудных месторождений, позволивших выделить культуры доминирующих видов бактерий и грибов. Установлено, что повышенной активностью в процессе растворения золота обладают представители родов Bacillus, Bacterium, Chromobacterium, а также полученные на основе индуцированного мутагенеза штаммы бактерий Bac. mesentericusniger 12 и 129.
Микроскопические грибы, в отличие от бактерий, способны аккумулировать золото из растворов. Наиболее эффективны представители родов Aspergillusnigerи Aspergillusoryzae.
В процессах бактериального выщелачивания золота определяющая роль принадлежит продуктам микробного синтеза: аминокислотам, пептидам, белкам и нуклеиновым кислотам. Углеводы в растворении золота участия не принимают. Экспериментально установлено, что в кислой среде белки осаждают золото, а в щелочной – растворяют. Солерастворимые белки микробного синтеза существенно лучше действуют на золото, чем глобулин животного происхождения. Реакционная способность пептидов зависит от их молекулярного веса: чем он меньше, тем выше растворимость золота.
В результате исследований факторов, регулирующих выщелачивание золота продуктами метаболизма гетеротрофных микроорганизмов, определено, что начальной стадией процесса является биосинтез золоторастворяющих соединений, который рекомендуется проводить в течение 2–3 суток при рН среды 5.5–6.5, температуре 30-35˚С и загрузке 3–4-х суточного посевного материала в количестве 4–5%. Основной процесс выщелачивания золота следует проводить при рН 9–10 в присутствии окислителя металла.
Исследованы механизм и кинетика растворения золота в водно-щелочных смесях малоно-нитрила. Показано, что наибольшая эффективность его проявляется в области рН 10 – 11, концентрация золота может достигать 65–70 мг/л, но уже при рН > 11.5 растворимость золота резко падает, а в кислой среде она практически не происходит.
Разложение золота существенно возрастает при использовании модифицированных гуминовых кислот, полученных путем нитрирования и сульфирования природных гуматов, а концентрация достигает 48–50 мг/л, что в 15–16 раз выше, чем с природными гуминовыми кислотами.
Для кучного выщелачивания золота аминокислотами микроорганизмов смонтирована установка и проведены испытания на песчаной руде (0.75 г/т Au) крупностью –300 +0 мм. Наибольшей величины концентрация золота в продуктивных растворах достигла в первые 5–6 суток. При средней скорости фильтрации 12–15 л/т * сутки за 12 суток было извлечено 46.7% золота и израсходовано 0.6 кг аминокислот, 0.4 кг перманганата калия и 4 кг гидроксида натрия на тонну руды.
Одной из наиболее активных по отношению к золоту группой бактерий является разновидность, относящаяся к виду Aeromonas. И. Парес, изучавший бактериальное выщелачивание золота, пришел к следующим выводам: наиболее сильной растворяющей способностью обладают бактерии, отобранные на самих золотоносных месторождениях; растворение Au осуществляется в несколько этапов (скрытая фаза, фаза нарастания интенсивности выщелачивания и стабильная фаза), примерно через 12 месяцев интенсивность выщелачивания резко снижается; бактерии, активно действующие на золото, разрушаются обычными микроорганизмами, живущими в воздухе; на растворение золота в числе других факторов большое влияние оказывает состав питательной среды.
В Иркутском государственном институте редких металлов проводились эксперименты по бактериальному выщелачиванию золота из руд различных месторождений. Изучен состав рудничных вод и пород с целью получения культур, способных интенсифицировать процесс выщелачивания золота. Установлены следующие микроорганизмы: Bacillus, Bacterium, Chromobacterium, Pseudomonas, Micrococcus, Sarcina, Thiobacillus. Показано, что в присутствии продуктов метаболизма бактерий выщелачивание протекает быстрее (в 2-4 раза). Разложение золота значительно возрастает с наличием окислителя и при использовании новых мутантов, полученных в результате воздействия на бактерии ультрафиолетового излучения в комбинации с химическим мутагеном – этиленимином: 1.5–2 против 0.4 мг/л без мутантов. Еще большая растворимость золота может быть достигнута путем разрушения клеточных оболочек различными реагентами (до 10–18 мг/л).
Выщелачивание золота различными растворителями сопровождается некоторыми побочными явлениями, снижающими извлечение металла или ухудшающими кинетические показатели. Этот вопрос пока еще недостаточно изучен. Существенную роль в процессах, протекающих в системах типа «вода-порода», играют поверхностные явления – сорбция, ионный обмен и т.д. Известно, что золото обладает способностью довольно активно сорбироваться различными минералами, особенно сульфидными и глинистыми. Соответственно, минеральный состав золотосодержащих пород должен быть оценен и с этих позиций.
Условия, способствующие и препятствующие сорбции золота различными минералами, изучались, например, в работе [4], в которой сделаны, следующие выводы: снижение извлечения золота за счет сорбции можно уменьшить, проводя выщелачивание в более жестких условиях; ограниченность использования растворителей, альтернативных цианидам, но образующих менее прочные комплексы с золотом, чем цианиды, связана с конкуренцией процессов выщелачивания и сорбции; при наличии в руде сорбционно-активных глинистых минералов нецелесообразно стремиться к чрезмерному повышению концентрации золота в растворе, поскольку это приведет к росту его потерь за счет сорбции.
Прогресс в гидрометаллургии благородных металлов в значительной степени связан с совершенствованием методов их извлечения из промышленных растворов и сточных вод. Эффективность осаждения их из различных сред зависит от наличия широкого ассортимента испытанных в производственных условиях методов. В связи с этим во многих странах, в том числе и в России, разработке этих вопросов уделяется большое внимание.
Стандартный (традиционный) метод осаждения золота из растворов – цементация металлическим цинком. В присутствии мышьяка Au осаждают методом сорбции на угле. В нашей стране промышленно освоен метод сорбционного цианирования, который повлек за собой разработку принципиально новых методов извлечения золота и серебра из тиомочевинных растворов. России также принадлежит приоритет в развитии методов извлечения благородных металлов с помощью углеграфитовых электродов.
В мире установилась тенденция широкого использования активных углей в качестве осадителей металлов. В настоящее время практическую значимость имеет только сорбция из цианистых растворов, этому процессу отдается предпочтение. За рубежом ионообменные смолы не получили промышленного применения в качестве осадителей благородных металлов из цианистых пульп, это связано с лучшими сорбционными и кинетическими свойствами активных углей и их более высокой селективностью по отношению к золотоцианистому комплексу, а такие же их низкой стоимостью (в 7–12 раз ниже цены ионообменных смол).
Различают два вида активных углей: пылевидные (-0.1 мм) и гранулированные (0.2 мм). Сорбция золота активными углями сопровождается окислительно-восстановительными процессами. Находящиеся в растворе дицианоаурат-ионы на поверхности угля преобразуются в цианокарбонилы и затем восстанавливаются до металлического золота.
Преимущества пылевидных углей – в их низкой стоимости, высоких кинетических и емкостных характеристиках, возможности исключения регенерации. Для того, чтобы снизить потери золота с тонкодисперсными частицами угля и быстро его отделить от раствора декантацией, разработан способ коагуляции угля в присутствии сернокислого алюминия. Вместе с тем, аппаратура для извлечения благородных металлов из цианистых растворов дисперсным активным углем еще до конца не разработана. Использование пылевидных сорбентов для извлечения золота из пульп менее распространено, что обусловлено трудностью отделения сорбента от пульпы. Извлечение золота в концентрат в этом случае составляет 88–92%, при этом последний содержит до 60–80% шлама. Отделить шлам от дисперсного угля практически не удается.
Более перспективным в настоящее время является применение сферических активных углей, которые характеризуются хорошо развитой пористой структурой, равномерной во всем объеме гранул. Однако их потери за счет истирания в 2–2.5 раза выше, чем потери ионообменных смол. Вместе с тем, активные угли обладают значительно большей селективностью по отношению к золоту, чем указанные смолы. При достижении насыщения угля АУ-50 его сорбционная емкость распределяется только между золотом и серебром в соотношении 4:1, коэффициент селективности равен единице, а для анионита АМ-2Б в аналогичных с углем условиях – 0.19.
Сорбционное осаждение золота из цианистых растворов активным углем оказалось наиболее оптимальным методом при кучном выщелачивании золотосодержащих руд ряда месторождений США. Технологические схемы на каждом месторождении, естественно, имеют свои особенности.
Применение ионного обмена для извлечения золота из растворов связано с успехами в области синтеза специфических ионитов. На ряде обогатительных фабрик СНГ осуществлена сорбционная технология извлечения золота и серебра из цианистых пульп различного состава с помощью макропористого анионита АМ-2Б. Установлено, что сложный состав жидкой фазы пульп ухудшает процесс: емкость анионита по золоту может снизиться в три раза. Работы по повышению извлечения золота из сложных цианистых пульп, ведутся в основном в двух направлениях: синтез новых селективных сорбентов и разработка эффективных схем их регенерации.
Для извлечения благородных металлов из солянокислых растворов эффективно применение смолы хелатного типа, имеющей емкость по золоту до 660 г/кг в присутствии меди, железа, никеля, кобальта, алюминия, кальция и других металлов. Дисульфидная смола нейтрального типа селективно извлекает золото из хлоридных растворов сложного состава. Перспективны исследования по разработке волокнистых сорбентов, которые значительно дешевле ионитов, обладают хорошими кинетическими и емкостными характеристиками. Разработана сорбция золота из тиомочевинных растворов электрообменными волокнами на основе поливинилового спирта. Затраты электрообменного волокна – 0.22 г на 1 г золота. Золото извлекается из раствора полностью, после сжигания волокна получается зола, содержащая до 48% золота. Российскими разработчиками получены и другие технологические решения по этой проблеме.
Успешное использование ионитов в обороте возможно при условии полного восстановления их первоначальной пористости и свойств после десорбции. В нашей стране и за рубежом имеется несколько схем регенерации анионитов. Наиболее распространенной является технология, разработанная российскими исследователями в 70-х годах XX века. Схема приемлема для восстановления гелеобразных и пористых анионитов различной основности и селективности (АМ, АМ-2Б, АП-2 и др.) и обеспечивает ее высокое качество. Эффективная бескислородная схема селективной регенерации анионитов растворами щелочи и роданида аммония, позволяющая исключить применение хлорида, цианида натрия, уменьшить количество промывочных операций, ускорить в 3–4 раза процесс восстановления, снизить расход реагентов. Из роданистых растворов золото может быть осаждено электролизом, цинковой или алюминиевой пылью, активированным углем, двуокисью серы.
Новым технологическим приемом извлечения благородных металлов из пульп является использование ферритизированных сорбентов в магнитном поле. Преимущества этого способа – возможность проведения сорбции на больших скоростях и простота отделения сорбентов от промышленных растворов. Например, скорость потока раствора может быть увеличена в 15–17 раз. Многие вопросы практического применения дисперсных ферритизированных сорбентов еще не решены, однако перспективность метода предопределяет актуальность исследований в этом направлении.
Электролиз в аппаратах с проточными объемно-пористыми катодами – один из наиболее экономичных способов извлечения золота из растворов. Эта технология базируется на исследованиях, выполненных в Институте химии твердого тела и механохимии СО РАН. Достоинства метода в том, что металл получается в достаточно концентрированном и чистом виде, не требуется использование реагентов, упрощается решение проблемы оборота растворов и автоматизация производства. Применение катодов с высокоразвитой поверхностью, по сравнению с плоскими катодами, позволило интенсифицировать процесс в 15–20 раз. Электролитически золото может извлекаться из тиомочевинных, цианистых, гипохлоридных растворов. Однако многие аспекты этого метода еще требуют дальнейшего исследования.
Необходимо упомянуть еще один способ осаждения золота из кислых хлоридных растворов плесневым грибом Aspergillus oryzae ВКМ-56 и Aspergillus niger, разработанный в Иркутском государственном институте редких металлов. При загрузке гриба в количестве 40 г/л за 4 суток осаждается 100% золота, 96% серебра, 84% платины и 92% палладия изсолянокислых растворов. Промышленные испытания показали приемлемость этого способа для бедных растворов золота (до 0.1 мг/л).
Существуют и другие технологические решения по извлечению золота из растворов, однако, они требуют специальной аппаратуры, могут быть осуществлены только в заводских условиях и поэтому не могут быть использованы при геотехнологической добыче золота.
Резюмируя вышеизложенный материал, можно сделать следующие выводы.
1. На зарубежных предприятиях наиболее распространен метод цианирования с последующим осаждением золота цинковой пылью. В России параллельно развиваются методы цианирования и сорбционного цианирования.
2. Во всех промышленно развитых странах применяется сорбция золота по методу «уголь в пульпе».
3. Сорбционное выщелачивание золота, использование ферритизированных сорбентов, электролитическое извлечение золота углеграфитовыми электродами развивается преимущественно в нашей стране.
4. Существуют технологические приемы извлечения золота и серебра из растворов, изученные только в лабораторных условиях. Внедрение их в практику – дело будущего.
1. Птицын А.Б. Добыча золота методами геотехнологии. Ч.1: технологические решения // Физико-технические проблемы разработки полезных ископаемых. – 2001. – №1.
2. Аренс В.Ж. Геотехнологические методы добычи полезных ископаемых. – М.: Недра, 1975.
3.
4.