Загрузить архив: | |
Файл: ref-21840.zip (25kb [zip], Скачиваний: 259) скачать |
Выполнил: студентка IIIкурса
Киприани Талия
Проверил преподаватель:
-----------------------------------
С оценкой:--------------------
Дата:---------------------------
Москва 2005 год
Измерением какой-либо физической величины называется операция, в результате которой определяется, во сколько раз эта величина больше (или меньше) другой величины, принятой за эталон. Так, за эталон длины принят метр, и, приводя измерения в соревнованиях или в тесте, мы узнаём, сколько метров, например, содержится в результате, показанном спортсменом, в прыжке в длину, в толкании ядра и т. д. Точно так же можно измерить время движений, мощность, развиваемую при их выполнении, и т. п.
Но не только такие измерения приходится выполнять в спортивной практике. Очень часто нужно оценить выразительность исполнения упражнений в фигурном катании или художественной гимнастике, сложность движений прыгунов в воду, утомление марафонцев, тактическое мастерство футболистов и фехтовальщиков. Здесь узаконенных эталонов нет, но именно эти измерения во многих видах спорта наиболее информативны. В этом случае измерением будет называться установление соответствия между изучаемыми явлениями, с одной стороны, и числами - с другой.
Внедрение научно-технического прогресса в физическое воспитание и спорт начинается с комплексного контроля. Информация, получаемая здесь, служит основой для всех последующих действий тренеров, научных и административных работников. Тысячи тренеров и специалистов, оценивающих какие-либо показатели (например, выносливость бегунов-спринтеров или эффективность техники боксёров), должны это делать одинаково. Для этого существуют стандарты на измерения.
Стандарт – это нормативно-технический документ, устанавливающий комплекс норм, правил, требований к объекту стандартизации (в данном случае, к спортивным измерениям) и утверждённый компетентным органом. Использование стандарта повышает точность, экономичность и единство измерений. Для усиления роли стандартизации в нашей стране действует Государственная система стандартизации (ГСС), содержащая организационные, правовые, методические и практические основы этой деятельности.
Метрологическое обеспечение-это применение научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и точности измерений в физическом воспитании и спорте. Научной основой этого обеспечения является метрология, организационной-метрологическая служба Госкомспорта России. Техническая основа включает в себя:
1) систему государственных эталонов;
2) систему разработки и выпуска средств измерений;
3) метрологическую аттестацию и проверку средств и методов измерений;
4) систему стандартных данных о показателях, подлежащих контролю в процессе подготовки спортсменов.
Метрологическое обеспечение направлено на то, чтобы обеспечить единство и точность измерений. Единство измерений достигается тем, что их результаты должны быть представлены в узаконенных единицах и с известной вероятностью погрешностей. В настоящее время используется международная система единиц (СИ), применение которой в России определено Государственным стандартом. Основными единицами физических величин в СИ являются единицы длины - метр (м); массы – килограмм (кг); времени – секунда (с); силы электрического тока – ампер (А); термодинамической температуры – кельвин (К); силы света – кандела (кд); количества вещества – моль (моль). Дополнительные единицы СИ: радиан (рад) и стерадиан (ср) – для измерения плоского и телесного углов соответственно.
Кроме того, в спортивно-педагогических измерениях используются следующие единицы измерений: силы – ньютон (Н); температуры – градусы Цельсия (*С), частоты – герц (Гц); давления – паскаль (Па); объёма – литр, миллилитр (л, мл).
С помощью расчётов из этих основных единиц получают производные. Например, работа, производимая движущимся телом, измеряется как произведение силы на массу (Ньютон.метр – Н.м). Мощность – как работа в единицу времени – измеряется в Н.м/с, скорость – в м/с и т. д.
Достаточно широко используются в практике внесистемные единицы. Например, мощность измеряется в лошадиных силах (л. с.), энергия – в калориях, давление – миллиметрах ртутного столба и т. д. Для перевода внесистемных единиц в СИ используются следующие отношения: 1 Н=0,102 кг (силы); 1 Нм=1 Дж (джоуль) =0,102;кгм=0,000239 ккал. Один ньютонметр слишком незначителен по величине, и поэтому работу спортсмена (или энергию, выделяемую при выполнении упражнений) чаще измеряют в килоджоулях: 1 кДж=1000 Нм=0,239 ккал=102 кгм.
Интенсивность (или мощность) упражнений измеряется в ваттах: 1 Вт=1 Дж/с=1 Н.м/с=0,102 кгм/с. Соответственно 1000 Вт=1 кВт=102 кгм/с. В практике спорта широкое распространение получил такой показатель, как энерготраты (в ккал) при выполнении упражнений в единицу времени (мин):1 ккал/мин=69,767 Вт=426,85 кгм/мин =4,186 кДж/мин. Используется и такая единица, как мет. Он равен:
ккал кДж
1 мет=0,0175-------------=0,0732--------------------
кг кг
Довольно часто, оценивая
интенсивность упражнения, отмечают, что оно выполняется при потреблении
кислорода на уровне, скажем, 4 л/мин. Необходимо запомнить, что при потреблении
Существует четыре основные шкалы измерений.
Собственно измерений, отвечающих определению этого действия, в шкале наименований не производится. Здесь речь идёт о группировке объектов, идентичных по определённому признаку, и о присвоении им обозначений. Не случайно, что другое название этой шкалы – номинальное (от латинского слова Nome – имя).
Обозначениями, присваиваемыми объектам, являются числа. Например, легкоатлеты-прыгуны в длину в этой шкале могут обозначаться номером 1, прыгуны в высоту – 2, прыгуны тройным – 3, прыгуны с шестом – 4.
При номинальных измерениях вводимая символика означает, что объект 1 только отличается от объектов 2, 3 или 4. Однако насколько отличается и в чём именно, по этой шкале измерить нельзя.
Каков же смысл в присвоении конкретным объектам (например, прыгунам) чисел? Делают это потому, что результаты измерений нужно обрабатывать. Математическая статистика, аппарат которой используется для этого, имеет дело с числами, и группировать объекты лучше не по словесным характеристикам, а по числам.
Если какие-то объекты обладают определённым
качеством, то порядковые измерения позволяют ответить на вопрос о различиях в этом
качестве. Например, соревнования в беге на
Но чаще всего шкала порядка используется там, где невозможны качественные измерения в принятой системе единиц. Например, в художественной гимнастике нужно измерить артистизм разных спортсменок. Тогда он устанавливается в виде рангов: ранг победителя – 1, второе место – 2 и т. д.
При использовании этой шкалы можно складывать и вычитать ранги и производить над ними какие-либо другие математические действия. Однако необходимо помнить, что если между второй и четвёртой спортсменками два ранга, то это вовсе не означает, что вторая вдвое артистичнее первой.
Измерения в этой шкале не только упорядочены по рангу, но и разделены определёнными интервалами. В интервальной шкале установлены единицы измерения (градус, секунда, и т. д.). Измеряемому объекту здесь присваивается число, равное количеству единиц измерения, которое он содержит. Например, температура тела спортсмена А. во время выполнения упражнения оказалась равной 39,0* С, спортсмена В. -39,5* С.
Обработка результатов измерений в интервальной шкале позволяет определить, «на сколько больше» один объект по сравнению с другим (в приведённом выше примере=0,5*). Здесь можно использовать любые методы статистики, кроме определения отношений. Связано это с тем, что нулевая точка этой шкалы выбирается произвольно.
В шкале отношений нулевая точка не произвольна, и, следовательно, в некоторый момент времени измеряемое количество может быть равно нулю.
В этой шкале какая-нибудь из единиц измерения принимается за эталон, а измеряемая величина содержит столько этих единиц, во сколько раз она больше эталона. Так, сила в 600 Н, равная 6,6.с, во столько же раз больше основной единицы измерения – одного ньютона. Результаты измерений в этой шкале могут обрабатываться любыми методами математической статистики.
Таблица «Характеристики и примеры шкал измерений»
(по Дж. Гласу, Дж. Стэнли)
Шкала |
Характеристики |
Математические методы |
Примеры |
Наименований |
Объекты сгруппированы, а группы обозначены но- мерами. То, что номер одной группы больше или меньше другой, ещё ничего не говорит об их свойствах, за исключением того, что они различаются |
Число случаев Мода Тетрахорические и полихорические коэффициенты корреляции |
Номер спортсмена Амплуа |
Порядка |
Числа, присвоенные объектам, отражают количество свойства, принадлежащего им. Возможно установление соотношения «больше» или «меньше» |
Медиана Ранговая корреляция Ранговые критерии Проверка гипотез непараметрической статистикой |
Результаты ранжирования спортсменов в тесте |
Интервалов |
Есть единица измерений, при помощи которой объекты можно упорядочить, приписать им числа так, чтобы равные разностиотражали разные различия в количестве измеряемого свойства |
Все методы статистики, кроме определения отношений |
Температура тела Суставные углы |
Отношений |
Отношение чисел, присвоенных объектам после измерений, отражают количественные отношения измеряемого свойства |
Все методы статистики |
Длина тела Масса тела Сила движений Ускорение |
В спортивной практике наибольшее распространение получили два вида измерений. Измерения, когда искомое значение величины находится непосредственно из опытных данных, являются прямыми. Например, регистрация скорости бега, дальности метаний, величины усилий и т. п. – это всё прямые измерения.
Косвенными называют измерения, при которых искомое значение величины находят на основании зависимости между этой величиной и величинами, подвергаемыми измерению. Например, между скоростью ведения мяча футболистом (V) и затратами энергии (Е) существует зависимость типа:
y = 1,683+1,322х |
где y – затраты энергии в ккал;
х – скорость ведения мяча. Если спортсмен ведёт мяч с V=6 м/с, то Е=9,6 ккал/мин.
Прямым способом измерить МПК сложно, а время бега – легко. Поэтому время бега измеряют, а МПК – рассчитывают.
Следует помнить, что никакое измерение не может быть выполнено абсолютно точно и результат измерения всегда содержит в себе ошибку. Необходимо стремиться к тому, чтобы эта ошибка была разумно минимальна. Напомним, что результаты контроля являются основой для планирования нагрузок. Поэтому точно измерили – точно спланировали и наоборот. Знание точности измерений – обязательное условие, и поэтому в задачу измерений входит не только нахождение самой величины, но и оценка допущенных при этом погрешностей (ошибок).
Ошибки измеренийподразделяются на систематические и случайные.
Величина систематических ошибок одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов. Различают четыре группы систематических ошибок:
1)ошибки, причина возникновения которых известна и величина которых может быть определена достаточно точно. Например, при определении результата прыжка рулеткой возможно изменение её длины за счёт различий в температуре воздуха. Это изменение можно оценить и ввести поправки в измеренный результат;
2)ошибки, причина возникновения которых известна, а величина нет. Такие ошибки зависят от класса точности измерительной аппаратуры. Например, если класс точности динамометра для измерения силовых качеств спортсменов составляет 2.0, то его показания правильны с точностью до 2% в пределах шкалы прибора. Но если проводить несколько измерений подряд, то ошибка в первом из них может быть равной 0,3%, а во втором – 2%, в третьем – 0,7% и т. д. При этом точно определить её значения для каждого из измерений нельзя;
3)ошибки, происхождение которых и величина неизвестны. Обычно они проявляются в сложных измерениях, когда не удаётся учесть все источники возможных погрешностей;
4)ошибки, связанные не столько с процессом измерения, сколько со свойствами объекта измерения. Как известно, объектами измерений в спортивной практике являются действия и движения спортсмена, его социальные, психологические, биохимические и т. п. показатели. Измерения такого типа характеризуются определённой вариативностью, и в её основе может быть множество причин. Рассмотрим следующий пример. Предположим, что при измерении времени сложной реакции хоккеистов используется методика, суммарная систематическая погрешность которой по первым трём группам не превышает 1%. Но в серии повторных измерений конкретного спортсмена получаются такие значения времени реакции (ВР): 0,653 с; 0,526 с; 0,755 с и т. д. Различия в результатах измерений обусловлены внутренними свойствами спортсменов: один из них стабилен и реагирует практически одинаково быстро во всех попытках, другой – нестабилен. Однако и эта стабильность (или нестабильность) может измениться в зависимости от утомления, эмоционального возбуждения, повышения уровня подготовленности.
Систематический контроль за спортсменами позволяет определить меру их стабильности и учитывать возможные погрешности измерений.
В некоторых случаях ошибки возникают по причинам, предсказать которые заранее невозможно. Такие ошибки называются случайными. Их выявляют и учитывают с помощью математического аппарата теории вероятностей.
Перед проведением любых измерений нужно определить источники систематических погрешностей и по возможности устранить их. Но так как полностью это сделать нельзя, то внесение поправок в результат измерения позволяет исправить его с учётом систематической погрешности.
Для устранения систематической погрешности используют:
а) тарирование – проверку показаний измерительных приборов путём сравнения их с показаниями эталонов во всём диапазоне возможных значений измеряемой величины;
б) калибровку – определение погрешностей и величины поправок.
Результат измерения любой величины отличается от истинного значения. Это отличие, равное разности между показанием прибора и истинным значением, называется абсолютной погрешностью измерения, которая выражается в тех же единицах, что и сама измеряемая величина:
Х = Хист - Хизм |
Где x – абсолютная погрешность.
При проведении комплексного контроля, когда измеряются показатели разной размерности, целесообразнее пользоваться не абсолютной, а относительной погрешностью. Она определяется по следующей формуле:
Х Хотн = -------------- * 100% Хизм |
Целесообразность применения Хотн связана со следующими обстоятельствами. Предположим, что мы измеряем
время с точностью до 0,1 с (абсолютная погрешность). При этом, если речь идёт о
беге на
Рассмотрим пример определения абсолютной и относительной погрешностей измерения. Предположим, что измерение частоты сердечных сокращений после бега с помощью высокоточного прибора даёт нам величину, весьма близкую к истинной и равную 150 уд/мин. Одновременное пальпаторное измерение даёт величину, равную 162 уд/мин.
Подставив эти значения в приведённые выше формулы, получим:
Х = 150 – 162 = 12 уд/мин – абсолютная погрешность; Хотн = (12:150) * 100% = 8% - относительная погрешность.
Таким образом, сформировываются следующие основные правила:
1)стремиться к максимально возможной точности измерений;
2)уметь определять величину, тип и причины ошибок;
3)научиться устранять их.
Спортивная метрология – это наука об измерениях в физическом воспитании и спорте. Её нужно рассматривать как конкретное приложение к общей метрологии, основной задачей которой, как известно, является обеспечение точности и единства измерений. Однако, как учебная дисциплина, спортивная метрология выходит за рамки общей метрологии.
Специалисты- метрологи основное внимание сосредотачивают на проблемах единства и точности измерений физических величин (длина, масса, время, температура, сила электрического тока, сила света и количество вещества).
В физическом воспитании и спорте некоторые из этих величин также подлежат измерению. Но более всего специалистов в области спортивной метрологии интересуют педагогические, биологические показатели, которые по своему содержанию нельзя назвать физическими. Методикой их измерений общая метрология практически не занимается, и поэтому возникла необходимость разработки специальных измерений, результаты которых всесторонне характеризуют подготовленность физкультурников и спортсменов.
Вывод
Таким образом, предметом спортивной метрологии (и теории измерений, в том числе) является комплексный контроль в физическом воспитании и спорте и использование его результатов в планировании подготовки спортсменов и физкультурников.
1)Годик М. А. Спортивная метрология. М.: ФиС, 1988.
2)Годик М. А. Контроль тренировочных и соревновательных нагрузок. М.: ФиС, 1980.
3)Бешелев С. Д., Гурвич Ф. Г. Математико-статистические методы экспертных оценок. М.: Статистика, 1989.
4)Зациорский В. М. Основы спортивной метрологии. М.: ФиС, 1981.
5)Иванов В. В. Комплексный контроль в подготовке спортсменов. М.: ФиС, 1987.
6)Пфанцль И. Теория измерений/Пер. с англ. М.: Мир, 1976
7)Уткин В. Л. Измерения в спорте (введение в спортивную метрологию). М.: ГЦОЛИФК, 1989.