Загрузить архив: | |
Файл: ref-22044.zip (188kb [zip], Скачиваний: 155) скачать |
ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ - ВЫСШАЯ ШКОЛА ЭКОНОМИКИ
по дисциплине
«КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ (ЭКОЛОГИЯ)»
На тему: «Экологические проблемы энергетики»
Слушатель: Семенов В.А.
Группа № 13ФКБ
Специальность:Финансы и кредит
Специализация: Финансовый контроль,
бухгалтерский учет и аудит
Преподаватель: Боров Л.И., к.с.-х.н.
Москва, 2005г.
Оглавление
Введение ………………………………………………………………... 3
1. Экологические проблемы теплоэнергетики ………………………. 5
2. Экологические проблемы гидроэнергетики ………………………. 12
3. Экологические проблемы ядерной энергетики …………………… 17
4. Краткая экологическая характеристика нетрадиционных методов
получения энергии…………………………………………………… 22
Заключение ………………………………………………………………29
Литература ……………………………………………………………….29
Введение
Одним из положений экологического аспекта стратегии устойчивого развития, принятой в Рио-де-Жанейро в 1992 г., является «...постепенный переход от энергетики, основанной на сжигании органического топлива, к альтернативной энергетике, использующей возобновляемые источники энергии (солнце, воду, ветер, энергию биомассы, подземное тепло и т. д.).
Анализ перспектив развития мировой энергетики свидетельствует о заметном смещении приоритетных проблем в сторону всесторонней оценки возможных последствий влияния основных отраслей энергетики на окружающую среду, жизнь и здоровье населения.
Объекты энергетики, как и многие предприятия других отраслей промышленности, представляют собой источники неизбежного, потенциального, до настоящего времени практически количественно не учитываемого риска для населения и окружающей среды.
Энергетические объекты (топливно-энергетический комплекс вообще и объекты энергетики в частности) по степени влияния на окружающую среду принадлежат к числу наиболее интенсивно воздействующих на биосферу.
Отрицательные последствия воздействия энергетики на окружающую среду следует ограничивать некоторым минимальным уровнем, например социально приемлемым допустимым уровнем. Должны работать экономические механизмы, реализующие компромисс между качеством среды обитания и социально-экономическими условиями жизни населения.
Аналогичный круг вопросов следует рассматривать при формулировании концепции экологической безопасности объектов теплоэнергетики: учет теплового и химического воздействия на окружающую среду, влияние водоемов-охладителей и т. п. Кроме того, для крупных ТЭС на твердом топливе (уголь, сланцы) возникают проблемы надежной и безопасной эксплуатации золоотвалов - сложных и ответственных грунтовых гидросооружений.
Энергетика - основной движущий фактор развития всех отраслей промышленности, транспорта, коммунального и сельского хозяйства, база повышения производительности труда и благосостояния населения. У нее наиболее высокие темпы развития и масштабы производства. Доля участия энергетических предприятий в загрязнении окружающей среды продуктами сгорания органических видов топлива, содержащих вредные примеси, а также тепловыми отходами весьма значительна [2].
В настоящей работе рассмотрено влияние на окружающую среду разных видов энергетики (теплоэнергетика, гидроэнергетика, ядерная энергетика), способы снижения выбросов и загрязнений от энергетических объектов, а также приведена характеристика нетрадиционных методов получения энергии (ветроэнергетика, солнечная энергия, энергия термальных вод).
1.Экологические проблемы теплоэнергетики
Воздействие тепловых электростанций на окружающую среду во многом зависит от вида сжигаемого топлива [1].
Твердое топливо. При сжигании твердого топлива в атмосферу поступают летучая зола с частицами недогоревшего топлива, сернистый и серный ангидриды, оксиды азота, некоторое количество фтористых соединений, а также газообразные продукты неполного сгорания топлива. Летучая зола в некоторых случаях содержит помимо нетоксичных составляющих и более вредные примеси. Так, в золе донецких антрацитов в незначительных количествах содержится мышьяк, а в золе Экибастузского и некоторых других месторождений — свободный диоксид кремния, в золе сланцев и углей Канско-Ачинского бассейна — свободный оксид кальция.
Уголь - самое распространенное ископаемое топливо на нашей планете. Специалисты считают, что его запасов хватит на 500 лет. Кроме того, уголь распространен по всему миру более равномерно и он более экономичен, чем нефть.Из угля можно получить синтетическое жидкое топливо. Метод получения горючего путем переработки угля известен давно. Однако слишком высокой была себестоимость такой продукции. Процесс происходит при высоком давлении. У этого топлива есть одно неоспоримое преимущество — у него выше октановое число. Это означает, что экологически оно будет более чистым.
Торф. При энергетическом использовании торфа имеет место ряд отрицательных последствий для окружающей среды, возникающих в результате добычи торфа в широких масштабах. К ним, в частности, относятся нарушение режима водных систем, изменение ландшафта и почвенного покрова в местах торфодобычи, ухудшение качества местных источников пресной воды и загрязнение воздушного бассейна, резкое ухудшение условий существования животных. Значительные экологические трудности возникают и в связи с необходимостью перевозки и хранения торфа.
Жидкое топливо. При сжигании жидкого топлива (мазутов) с дымовыми газами в атмосферный воздух поступают: сернистый и серный ангидриды, оксиды азота, соединения ванадия, солей натрия, а также вещества, удаляемые с поверхности котлов при чистке. С экологических позиций жидкое топливо более «гигиеничное». При этом полностью отпадает проблема золоотвалов, которые занимают значительные территории, исключают их полезное использование и являются источником постоянных загрязнений атмосферы в районе станции из-за уноса части золы с ветрами. В продуктах сгорания жидких видов топлива отсутствует летучая зола.
Природный газ. При сжигании природного газа существенным загрязнителем атмосферы являются оксиды азота. Однако выброс оксидов азота при сжигании на ТЭС природного газа в среднем на 20% ниже, чем при сжигании угля. Это объясняется не свойствами самого топлива, а особенностями процессов сжигания. Коэффициент избытка воздуха при сжигании угля ниже, чем при сжигании природного газа. Таким образом, природный газ является наиболее экологически чистым видом энергетического топлива и по выделению оксидов азота в процессе горения.
Комплексное влияние предприятий теплоэнергетики на биосферу в целом проиллюстрировано в табл. 1.
Таким образом, в качестве топлива на тепловых электростанциях используют уголь, нефть и нефтепродукты, природный газ и, реже, древесину и торф. Основными компонентами горючих материалов являются углерод, водород и кислород, в меньших количествах содержится сера и азот, присутствуют также следы металлов и их соединений (чаще всего оксиды и сульфиды).
В теплоэнергетике источником массированных атмосферных выбросов и крупнотоннажных твердых отходов являются теплоэлектростанции, предприятия и установки паросилового хозяйства, т. е. любые предприятия, работа которых связана со сжиганием топлива .
Таблица 1
Комплексное влияние предприятий теплоэнергетики на биосферу
Технологический процесс |
Влияние на элементы среды и живые системы |
Примеры цепных реакций в биосфере |
|||
воздух |
почвы и грунт |
воды |
Экосистемы и человек |
||
1 |
2 |
3 |
4 |
5 |
6 |
Добыча топлива: |
Углеводородное загрязнение при испарениях и утечках |
Повреждение или уничтожение почв при разведке и добыче топлива, передвижениях транспорта и т.п.; загрязнение нефтью, техническими химикатами, металлолом и др. отходами |
Загрязнение нефтью в результате утечек, особенно при авариях и добычах со дна водоемов, загрязнение технологическими химреагентами и др. отходами; Разрушение водоносных структур в грунтах, откачка подземных вод, их сброс в водоемы |
Разрушение и повреждение экосистем в местах добычи и при обустройстве месторождений (дороги, ЛЭП, водопроводы и т.п.), загрязнения при утечках и авариях. |
Загрязнение почв, загрязнение вод нефтью и химреагентами, снижение рыбопродуктивности, потеря потребительских или вкусовых свойств воды и продуктов промысла |
-твердое: угли, сланцы торф и т.п. |
Пыль при взрывных и других работах |
Разрушение почвы и грунтов при добыче открытыми методами (карьеры), просадки рельефа, разрушение грунтов при шахтных работах |
Сильное нарушение водоносных структур, откачка и сброс в водоемы шахтных, часто высокоминирали-зированных, желе-зистых и других вод |
Разрушение экосистем или их элементов, особенно при открытых способах добычи, снижение продуктивности, воздействие на человека через загрязненные воздух, воды и пищу. Высокая степень заболеваемости, травматизма и смертности при шахтных способах добычи |
|
1 |
2 |
3 |
4 |
5 |
6 |
Транспортировка топлива |
Загрязнение при испарениии жидкого топлива, потере газа, нефти, пылью от твердого топлива |
Загрязнение при утечках, авариях, особенно нефтью |
Загрязнение нефтью в результате потерь и при авариях |
В основном через загрязнение вод |
|
Работа электростанций на твердом топливе |
Основные поставщики углекислого газа, оксидов серы и азота, продуктов для кислых осадков, аэрозолей, сажи, загрязнение радиоактивными веществами, тяжелыми металлами |
Разрушение и сильное загрязнение почв вблизи предприятий (зоны отчуждения), загрязнения тяжелыми металлами, радиоактивными веществами, кислыми осадками, отчуждение земель под землеотвалы, другие отходы |
Тепловое загрязнение в результате сбросов подогретых вод, химическое загрязнение через кислые осадки и сухое осаждение из атмосферы, вымывание ядовитых веществ из почв и грунтов |
Основной агент разрушения и гибели экосистем, особенно озер и хвойных лесов (обеднение видового состава, снижение продуктивности, повреждение корней). На человека через загрязнение воздуха, воды, продуктов питания. Разрушение природы, строений, памятников. |
Загрязнение воздуха продуктами горения ® кислые осадки ® гибель лесов и экосистем озер. Тепловое загрязнение вод ® дефицит кислорода ® цветение вод ® усиление дефицита кислорода ® превращение водных систем в болотные |
Работа электростанций на жидком топливе и газе |
То же, но в значительно меньших масштабах |
То же, но в значительно меньших масштабах |
Тепловое загрязнение, как для твердого топлива, остальное в значительно меньших масштабах |
То же, но в значительно меньших масштабах |
Наряду с газообразными выбросами теплоэнергетика производит огромные массы твердых отходов; к ним относятся зола и шлаки.
Отходы
углеобогатительных фабрик содержат 55-60%
SiO2, 22-26% Аl2О3,
5-12% Fe2O3, 0,5-1% CaO, 4-4,5% К2О
и Nа2О и до 5% С. Они поступают в отвалы, которые
пылят, дымят и резко ухудшают состояние атмосферы
и прилегающих территорий [1].
Жизнь на Земле возникла в условиях восстановительной атмосферы и только значительно позже, спустя примерно 2 млрд лет, биосфера постепенно преобразовала восстановительную атмосферу в окислительную. При этом живое вещество предварительно вывело из атмосферы различные вещества, в частности, углекислый газ, образовав огромные залежи известняков и других углеродосодержащих соединений.
Сейчас наша техногенная цивилизация сформировала мощный поток восстановительных газов, в первую очередь вследствие сжигания ископаемого топлива в целях получения энергии. За 20 лет, с 1970 по 1990 год, в мире было сожжено 450 млрд баррелей нефти, 90 млрд т угля, 11 трлн м3 газа (табл. 2).
Таблица 2
Выбросы в атмосферу электростанцией мощностью 1000 МВт в год (в тоннах)
Топливо |
Выбросы |
||||
углеводороды |
СО |
NOx |
SO2 |
частицы |
|
Уголь |
400 |
2000 |
27 000 |
110 000 |
3 000 |
Нефть |
470 |
700 |
25 000 |
37 000 |
1 200 |
Природный газ |
34 |
— |
20 000 |
20,4 |
500 |
Основную часть выброса занимает углекислый газ - порядка 1 млн т в пересчете на углерод 1 Мт. Со сточными водами тепловой электростанции ежегодно удаляется 66 т органики, 82 т серной кислоты, 26 т хлоридов, 41 т фосфатов и почти 500 т взвешенных частиц. Зола электростанций часто содержит повышенные концентрации тяжелых, редко земельных и радиоактивных веществ.
Для электростанции, работающей на угле, требуется 3,6 млн т угля, 150 м3 воды и около 30 млрд м3 воздуха ежегодно. В приведенных цифрах не учтены нарушения окружающей среды, связанные с добычей и транспортировкой угля.
Если учесть, что подобная электростанция активно работает несколько десятилетий, то ее воздействие вполне можно сравнить с действием вулкана. Ноесли последний обычно выбрасывает продукты вулканизма в больших количества разово, то электростанция делает это постоянно. За десятки тысячелетий вулканическая деятельность не смогла сколько-нибудь заметно повлиять на состав атмосферы, а хозяйственная деятельность человека за какие-то 100-200 лет обусловила такие изменения, причем в основном за счет сжигания ископаемого топлива и выбросов парниковых газов разрушенными и деформированными экосистемами.
Коэффициент полезного действия энергетических установок пока невелик и составляет 30-40%, большая часть топлива сжигается впустую. Полученная энергия тем или иным способом используется и превращается, в конечном счете, в тепловую, т. е. помимо химического в биосферу поступает тепловое загрязнение [2].
Загрязнение и отходы энергетических объектов в виде газовой, жидкой и твердой фазы распределяются на два потока: один вызывает глобальные изменения, а другой — региональные и локальные. Так же обстоит дело и в других отраслях хозяйства, но все же энергетика и сжигание ископаемого топлива остаются источником основных глобальных загрязнителей. Они поступают в атмосферу, и за счет их накопления изменяется концентрация малых газовых составляющих атмосферы, в том числе парниковых газов. В атмосфере появились газы, которые ранее в ней практически отсутствовали - хлорфторуглероды. Это глобальные загрязнители, имеющие высокий парниковый эффект и в то же время участвующие в разрушении озонового экрана стратосферы.
Таким образом, следует отметить, что на современном этапе тепловые электростанции выбрасывают в атмосферу около 20% от общего количества всех вредных отходов промышленности. Они существенно влияют на окружающую среду района их расположения и на состояние биосферы в целом. Наиболее вредны конденсационные электрические станции, работающие на низкосортных видах топлива. Так, при сжигании на станции за 1 час 1060 т донецкого угля из топок котлов удаляется 34,5 т шлака, из бункеров электрофильтров, очищающих газы на 99% — 193,5 т золы, а через трубы в атмосферу выбрасывается 10 млн м3 дымовых газов. Эти газы, помимо азота и остатков кислорода, содержат 2350 т диоксида углерода, 251 т паров воды, 34 т диоксида серы, 9,34 т оксидов азота (в пересчете на диоксид) и 2 т летучей золы, не «пойманной» электрофильтрами.
Сточные воды ТЭС и ливневые стоки с их территорий, загрязненные отходами технологических циклов энергоустановок и содержащие ванадий, никель, фтор, фенолы и нефтепродукты, при сбросе в водоемы могут оказать влияние на качество воды, водные организмы. Изменение химического состава тех или иных веществ приводит к нарушению установившихся в водоеме условий обитания и сказывается на видовом составе и численности водных организмов и бактерий и в конечном счете может привести к нарушениям процессов самоочищения водоемов от загрязнений и к ухудшению их санитарного состояния.
Представляет опасность и так называемое тепловое загрязнение водоемов с многообразными нарушениями их состояния. ТЭС производят энергию при помощи турбин, приводимых в движение нагретым паром. При работе турбин необходимо охлаждать водой отработанный пар, поэтому от энергетической станции непрерывно отходит поток воды, подогретой обычно на 8-12 °С и сбрасываемой в водоем. Крупные ТЭС нуждаются в больших объемах воды. Они сбрасывают в подогретом состоянии 80-90 м3/с воды. Это означает, что в водоем непрерывно поступает мощный поток теплой воды примерно такого масштаба, как река Москва.
Зона подогрева, образующаяся в месте впадения теплой «реки», представляет собой своеобразный участок водоема, в котором температура максимальна в точке водосброса и уменьшается по мере удаления от нее. Зоны подогрева крупных ТЭС занимают площадь в несколько десятков квадратных километров. Зимой в зоне подогрева образуются полыньи (в северных и средних широтах). В летние месяцы температуры в зонах подогрева зависят от естественной температуры забираемой воды. Если в водоеме температура воды 20 °С, то в зоне подогрева она может достигнуть 28-32°С.
В результате повышения температур в водоеме и нарушения их естественного гидротермического режима интенсифицируются процессы «цветения» воды, уменьшается способность газов растворяться в воде, меняются физические свойства воды, ускоряются все химические и биологические процессы, протекающие в ней, и т. д. В зоне подогрева снижается прозрачность воды, увеличивается рН, увеличивается скорость разложения легко окисляющихся веществ. Скорость фотосинтеза в такой воде заметно понижается.
2.Экологические проблемы гидроэнергетики
Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами - их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооружению ГЭС, несмотря на значительные удельные капиталовложения на 1 кВт установленной мощности и продолжительные сроки строительства, придавалось и придаётся большое значение, особенно когда это связано с размещением электроёмких производств [1].
Гидроэлектростанция — это комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.
Несмотря на относительную дешевизну энергии, получаемой за счет гидроресурсов, доля их в энергетическом балансе постепенно уменьшается. Это связано как с исчерпанием наиболее дешевых ресурсов, так и с большой территориальной емкостью равнинных водохранилищ. Считается, что в перспективе мировое производство энергии ГЭС не будет превышать 5% от общей.
Одной из важнейших причин уменьшения доли энергии, получаемой на ГЭС, является мощное воздействие всех этапов строительства и эксплуатации гидросооружений на окружающую среду (табл. 3).
По данным разных исследований, одним из важнейших воздействий гидроэнергетики на окружающую среду является отчуждение значительных площадей плодородных (пойменных) земель под водохранилища. В России, где за счет использования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоплено не менее 6 млн га земель. На их месте уничтожены естественные экосистемы.
Значительные площади земель вблизи водохранилищ испытывают подтопление в результате повышения уровня грунтовых вод. Эти земли, как правило, переходят в категорию заболоченных. В равнинных условиях подтопленные земли могут составлять 10% и более от затопленных. Уничтожение земель и свойственных им экосистем происходит также в результате их разрушения водой (абразии) при формировании береговой линии. Абразионные процессы обычно продолжаются десятилетиями, имеют следствием переработку больших масс почвогрунтов, загрязнение вод, заиление водохранилищ. Таким образом, со строительством водохранилищ связано резкое нарушение гидрологического режима рек, свойственных им экосистем и видового состава гидробионтов.
В водохранилищах резко усиливается прогревание вод, что интенсифицирует потерю ими кислорода и другие процессы, обусловливаемые тепловым загрязнением. Последнее, совместно с накоплением биогенных веществ, создает условия для зарастания водоемов и интенсивного развития водорослей, в том числе и ядовитых сине-зеленых. По этим причинам, а также вследствие медленной обновляемости вод резко снижается их способность к самоочищению.
Ухудшение качества воды ведет к гибели многих ее обитателей. Возрастает заболеваемость рыбного стада, особенно поражаемость гельминтами. Снижаются вкусовые качества обитателей водной среды.
Нарушаются пути миграции рыб, идет разрушение кормовых угодий, нерестилищ и т. п. Волга во многом потеряла свое значение как нерестилище для осетровых Каспия после строительства на ней каскада ГЭС.
В конечном счете, перекрытые водохранилищами речные системы из транзитных превращаются в транзитно-аккумулятивные. Кроме биогенных веществ здесь аккумулируются тяжелые металлы, радиоактивные элементы и многие ядохимикаты с длительным периодом жизни. Продукты аккумуляции делают проблематичной возможность использования территорий, занимаемых водохранилищами, после их ликвидации.
Водохранилища оказывают заметное влияние на атмосферные процессы. Например, в засушливых (аридных) районах испарение с поверхности водохранилищ превышает испарение с равновеликой поверхности суши в десятки раз.
Таблица 3
Комплексное воздействие предприятий гидроэнергетики на окружающую среду
Технологический процесс |
Влияние на элементы среды и живые системы |
Примеры цепных реакций в биосфере |
|||
воздух |
почвы и грунт |
воды |
Экосистемы и человек |
||
1 |
2 |
3 |
4 |
5 |
6 |
Строительство ГЭС |
Аэрозольное загрязнение продуктами разрушения почв, стройматериалами (особенно цементом); химическое – в небольших объемах в основном от работы техники, предприятий |
Разрушение почв и грунтов на стройплощадках, подъездных путях, хозяйственных объектах и т.п.; перемещение больших масс грунтов, особенно при строительстве плотин и обустройстве водохранилищ |
Некоторое нарушение режима и загрязнение в местах строительства (обводные каналы и т.п.) |
Частичное разрушение экосистем и их элементов (растительности, почв), фактор беспокойства для животных, интенсивный промысел и т.п. Влияние на человека в основном через изменение среды и социальные факторы. |
Текущая вода ® водохранилище ® накопление химических веществ плюс тепловое загрязнение ® зарастание водоема (цветение) ® обогащение органикой ® обескислороживание ® порча воды ® болезни рыб ® потеря пищевых или вкусовых свойств воды и продуктов промысла. |
1 |
2 |
3 |
4 |
5 |
6 |
Работа ГЭС |
Повышение влажности, понижение температур, туманы, местные ветры, часто неприятный запах от гниения органических остатков |
То же, что и при затоплении, плюс многолетнее разрушение береговой линии (абразия), формирование новых типов почв в прибрежной зоне |
Загрязнение в результате стоков с водосбросов и разложения больших масс органики, почв, растительных остатков, древесины и т.п., образование фенолов, усиленное прогревание мелководий, цветение, потеря кислорода, накопление тяжелых металлов, ила, радиоактивных и другиих веществ, порча воды |
Формирование новых экосистем ( в основном луговых и болотных) в зоне подтопления, зарастание вод. Цветение, нарушение миграций рыб, смена более ценных видов рыб менее ценными, заболевания рыб. Потеря вкусовых качеств рыб. Увеличение вероятности заболеваний людей при купании. |
|
Затопление водохранилищ |
Дополнительное испарение с чаши водохранилищ |
Уход под воду плодородных пойменных земель (затопление), подъем грунтовых вод в прибрежной зоне (подтопление, заболачивание). В горных условиях такие явления выражены в меньшей степени. |
Смена текущих вод на застойные, неизбежное загрязнение водохранилищ быстрорастворимыми или взмучиваемыми веществами при заполнении чаши водохранилищ и формировании берегов. |
Полное уничтожение сухопутных экосистем (сведение лесов или их гибель от подтопления, часто оставление всей биомассы в зоне затопления), смена прибрежных экосистем. Неизбежное переселение людей из зоны затопления, социальные издержки. |
Давление водных масс на ложе водохранилищ ® интенсификация сейсмических явлений |
С повышенным испарением связано понижение температуры воздуха, увеличение туманных явлений. Различие тепловых балансов водохранилищ и прилегающей суши обусловливает формирование местных ветров типа бризов. Эти, а также другие явления имеют следствием смену экосистем (не всегда положительную), изменение погоды. В ряде случаев в зоне водохранилищ приходится менять направление сельского хозяйства. Например в южных районах нашей страны некоторые теплолюбивые культуры (бахчевые) не успевают вызревать, повышается заболеваемость растений, ухудшается качество продукции.
Издержки гидростроительства для среды заметно меньше в горных районах, где водохранилища обычно невелики по площади. Однако в сейсмоопасных горных районах водохранилища могут провоцировать землетрясения. Увеличивается вероятность оползневых явлений и вероятность катастроф в результате возможного разрушения плотин. Так, в 1960 г. в Индии (штат Гунжарат) в результате прорыва плотины вода унесла 15 тысяч жизней людей.
В силу специфики технологии использования водной энергии гидроэнергетические объекты преобразуют природные процессы на весьма длительные сроки. Например водохранилище ГЭС (или система водохранилищ в случае каскада ГЭС) может существовать десятки и сотни лет, при этом на месте естественного водотока возникает техногенный объект с искусственным регулированием природных процессов - природно-техническая система (ПТС). В данном случае задача сводится к формированию такой ПТС, которая обеспечивала бы надежное и экологически безопасное формирование комплекса. При этом соотношение между основными подсистемами ПТС (техногенным объектом и природной средой) может быть существенно различным в зависимости от выбранных приоритетов - технических, экологических, социально-экономических и др., а принцип экологической безопасности может формулироваться, например, как поддержание некоторого устойчивого состояния создаваемой ПТС.
Эффективным способом уменьшения затопления территорий является увеличение количества ГЭС в каскаде с уменьшением на каждой ступени напора и, следовательно, зеркала водохранилищ. Несмотря на снижение энергетических показателей и уменьшение регулирующих возможностей возрастания стоимости, низконапорные гидроузлы, обеспечивающие минимальные затопления земель, лежат в основе всех современных разработок.
Еще одна экологическая проблема гидроэнергетики связана с оценкой качества водной среды. Имеющее место загрязнение воды вызвано не технологическими процессами производства электроэнергии на ГЭС (объемы загрязнений, поступающие со сточными водами ГЭС, составляют ничтожно малую долю в общей массе загрязнений хозяйственного комплекса), а низкое качество санитарно-технических работ при создании водохранилищ и сброс неочищенных стоков в водные объекты.
В водохранилищах задерживается большая часть питательных веществ, приносимых реками. В теплую погоду водоросли способны массами размножаться в поверхностных слоях обогащенного питательными веществами, или эвтрофного, водохранилища. В ходе фотосинтеза водоросли потребляют питательные вещества из водохранилища и производят большое количество кислорода. Отмершие водоросли придают воде неприятный запах и вкус, покрывают толстым слоем дно и препятствуют отдыху людей на берегах водохранилищ. Массовое размножение, «цветение» водорослей в неглубоких заболоченных водохранилищах стран СНГ делает их воду непригодной ни для промышленного использования, ни для хозяйственных нужд.
В первые годы после заполнения водохранилища в нем появляется много разложившейся растительности, а «новый» грунт может резко снизить уровень кислорода в воде. Гниение органических веществ может привести к выделению огромного количества парниковых газов — метана и двуокиси углерода.
Водохранилища часто «созревают» десятилетиями или дольше, а в тропиках этот процесс длится столетиями — пока разложится большая часть всей органики.
Рассматривая воздействие ГЭС на окружающую среду, следует все же отметить жизнесберегающую функцию ГЭС. Так, выработка каждого млрд кВтч электроэнергии на ГЭС вместо ТЭС приводит к уменьшению смертности населения на 100-226 чел./год.
3. Проблемы ядерной энергетики
Ядерная энергетика в настоящее время может рассматриваться как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. Достаточно отметить, что 0,5 кг ядерного топлива позволяет получать столько же энергии, сколько сжигание 1000 т каменного угля.
Известно, что процессы, лежащие в основе получения энергии на АЭС — реакции деления атомных ядер — гораздо более опасны, чем, например, процессы горения. Именно поэтому ядерная энергетика впервые в истории развития промышленности при получении энергии реализует принцип максимальной безопасности при наибольшей возможной производительности.
Многолетний опыт эксплуатации АЭС во всех странах показывает, что они не оказывают заметного влияния на окружающую среду. К 1998 г. среднее время эксплуатации АЭС составило 20 лет. Надежность, безопасность и экономическая эффективность атомных электростанций опирается не только на жесткую регламентацию процесса функционирования АЭС, но и на сведение до абсолютного минимума влияния АЭС на окружающую среду.
В табл. 4 представлены сравнительные данные АЭС и ТЭС по расходу топлива и загрязнению окружающей среды за год при мощности по 1000 МВт.
Таблица 4
Расход топлива и загрязнение окружающей среды
Факторы воздействия на среду |
ТЭС |
АЭС |
Топливо |
3,5 млн. т. угля |
1,5 т урана или 1000 т. урановой руды |
Отходы: Углекислый газ Сернистый ангидрид и др. соед. Зола Радиоактивные |
10 млн. т. 400 тыс. т. 100 тыс. т. — |
— — — 2 т. |
При нормальной работе АЭС выбросы радиоактивных элементов в окружающую среду крайне незначительны. В среднем, они в 2-4 раза меньше, чем от ТЭС одинаковой мощности.
К маю 1986 г. 400 энергоблоков, работавших в мире и дававших более 17% электроэнергии, увеличили природный фон радиоактивности не более чем на 0,02%. До Чернобыльской катастрофы в нашей стране никакая отрасль производства не имела меньшего уровня производственного травматизма, чем АЭС. За 30 лет до трагедии при авариях, и то не по радиационным причинам, погибло 17 человек. После 1986 г. главную экологическую опасность АЭС стали связывать с возможностью аварии. Хотя вероятность их на современных АЭС и невелика, но она не исключается. К наиболее крупным авариям такого плана относится авария, случившаяся на четвертом блоке Чернобыльской АЭС.
По различным данным, суммарный выброс продуктов деления от содержащихся в реакторе составил от 3,5% (63 кг) до 28% (50 т). Для сравнения необходимо отметить, что бомба, сброшенная на Хиросиму, дала только 740 г радиоактивного вещества.
В результате аварии на Чернобыльской АЭС радиоактивному загрязнению подверглась территория в радиусе более 2 тыс. км, охватившая более 20 государств. В пределах бывшего СССР пострадало 11 областей, где проживает 17 млн человек. Общая площадь загрязненных территорий превышает 8 млн га, или 80 0000 км2. В России наиболее значительно пострадали Брянская, Калужская, Тульская и Орловская области. Пятна загрязнений имеются в Белгородской, Рязанской, Смоленской, Ленинградской и других областях. В результате аварии погиб 31 человек и более 200 человек получили дозу радиации, приведшую к лучевой болезни. 115 тыс. человек было эвакуировано из наиболее опасной (30-километровой) зоны сразу после аварии. Число жертв и количество эвакуированных жителей увеличивается, расширяется зона загрязнения в результате перемещения радиоактивных веществ ветром, при пожарах, с транспортом и т. п. Последствия аварии будут сказываться на жизни нескольких поколений.
После Чернобыльской аварии во многих государствах по требованию общественности были временно прекращены или свернуты программы строительства АЭС, однако атомная энергетика продолжала развиваться в 32 странах.
Сейчас дискуссии по вопросам приемлемости или неприемлемости ядерной энергетики пошли на спад, стало понятно, что мир не может вновь погрузиться во тьму или смириться с крайне опасным воздействием на атмосферу двуокиси углерода и прочих вредных для человека продуктов горения органического топлива. Уже в течение 1990 года 10 новых АЭС были подключены к электрическим сетям. Строительство АЭС не останавливается: по состоянию на конец 1999 г. в мире в эксплуатации находилось 436 энергоблоков АЭС по сравнению с 434, зарегистрированными в 1998 г. Общая электрическая мощность работающих в мире энергоблоков около 335 ГВт (1 ГВт = 1000 МВт = 109 Вт). Действующие атомные электростанции обеспечивают покрытие 7% мировых потребностей в энергии, а их доля в мировом производстве электрической энергии составляет 17%. Только в Западной Европе атомные электростанции вырабатывают в среднем около 50% всей электроэнергии.
Если сейчас заменить все действующие в мире атомные электростанции на тепловые, мировой экономике, всей нашей планете и каждому человеку в отдельности был бы нанесен непоправимый ущерб. Этот вывод основан на том факте, что получение энергии на АЭС одновременно предотвращает ежегодный выброс в атмосферу Земли до 2300 млн т двуокиси углерода, 80 млн т диоксида серы и 35 млн т оксидов азота за счет уменьшения количества сжигаемого органического топлива на тепловых электростанциях. Кроме того, сгорая, органическое топливо (уголь, нефть) выбрасывает в атмосферу огромное количество радиоактивных веществ, содержащих, в основном, изотопы радия с периодом полураспада около 1600 лет! Извлечь все эти опасные вещества из атмосферы и обезопасить от их воздействия население Земли в этом случае не представлялось бы возможным. Вот лишь один конкретный пример. Закрытие в Швеции атомной станции Барсебек-1 привело к тому, что Швеция впервые за последние 30 лет стала импортировать электроэнергию из Дании. Экологические последствия этого таковы: на угольных электростанциях Дании было сожжено дополнительно почти 350 тыс. т угля из России и Польши, что привело к росту выбросов двуокиси углерода на 4 млн т (!) в год и значительному увеличению количества выпадающих кислотных дождей во всей южной части Швеции.
Строительство АЭС осуществляют на расстоянии 30-35 км от крупных городов. Участок должен хорошо проветриваться, во время паводка не затопляться. Вокруг АЭС предусматривают место для санитарно-защитной зоны, в которой запрещается проживание населения.
В РФ в настоящее время эксплуатируется 29 энергоблоков на девяти АЭС общей установленной электрической мощностью 21,24 ГВт. В 1995-1998 гг. на АЭС в России вырабатывалось более 13% всего производства электроэнергии в стране, сейчас - 14,4%. По суммарной установленной мощности АЭС Россия занимает пятое место после США, Франции, Японии и Германии. В настоящее время более 100 млрд кВт*ч, вырабатываемые ядерными энергоблоками страны, вносят значительный и необходимый вклад в энергообеспечение ее европейской части — 22% всей производимой электроэнергии. Производимая на АЭС электроэнергия более чем на 30% дешевле, чем на тепловых электростанциях, использующих органическое топливо.
Безопасность действующих АЭС является одной из главнейших задач российской атомной энергетики. Все планы строительства, реконструкции и модернизации атомных электростанций России реализуются только с учетом современных требований и нормативов. Исследование состояния основного оборудования действующих российских АЭС показало, что продление сроков его службы, по крайней мере, еще на 5-10 лет вполне возможно. Причем, благодаря проведению соответствующего комплекса работ по каждому энергоблоку, с сохранением высокого уровня безопасности.
Для обеспечения дальнейшего развития атомной энергетики в России в 1998 г. принята «Программа развития атомной энергетики Российской Федерации на 1998-2000 гг. и на период до 2010 г.». В ней отмечено, что в 1999 г. АЭС России выработали на 16% больше энергии, чем в 1998 г. Для производства этого количества энергии на ТЭС потребовалось бы 36 млрд м3 газа стоимостью 2,5 млрд долл в экспортных ценах. На 90% рост потребления энергии в стране был обеспечен за счет ее выработки на атомных электростанциях.
Оценивая перспективы развития мировой атомной энергетики, большинство авторитетных международных организаций, связанных с исследованием глобальных топливно-энергетических проблем, предполагает, что после 2010-2020 гг. в мире вновь возрастет потребность в широком строительстве АЭС. По реалистическому варианту, прогнозируется, что в середине XXI в. около 50 стран будут располагать атомной энергетикой. При этом общая установленная электрическая мощность АЭС в мире к 2020 г. возрастет почти вдвое — достигнет 570 ГВт, а к 2050 — 1100 ГВт.
4. Краткая экологическая характеристика нетрадиционных методов получения энергии
Как сказано выше, в настоящее время основные энергоресурсы, за счет которых обеспечиваются энергетические потребности человечества, это: органическое топливо, вода, энергия деления атомного ядра.
Одновременно с решением задач уменьшения воздействия на среду традиционных методов получения энергии наука и производство изучают возможности получения энергии за счет альтернативных (нетрадиционных) ресурсов, таких, как энергия ветра, солнца, геотермальная и энергия волн и других источников, которые относятся к неисчерпаемым и экологически чистым.
Ниже будут приведены некоторые имеющиеся сведения о влиянии нетрадиционных методов получения энергии на окружающую среду.
Ветроэнергетика
Является наиболее древним источником энергии. В течение нескольких столетий ветер использовался на мельницах, пилорамах, в системах подачи воды к местам потребления и т. п. Они же использовались и для получения электрической энергии, хотя доля ветра в этом отношении оставалась крайне незначительной.
Интерес к использованию ветра для получения электроэнергии оживился в последние годы. К настоящему времени испытаны ветродвигатели различной мощности, вплоть до гигантских. Сделаны выводы, что в районах с интенсивным движением воздуха ветроустановки вполне могут обеспечивать энергией местные потребности. Оправдано использование ветротурбин для обслуживания отдельных объектов (жилых домов, неэнергоемких производств и т. п.). Вместе с тем, стало очевидным, что гигантские ветроустановки пока не оправдывают себя вследствие дороговизны сооружений, сильных вибраций, шумов, быстрого выхода из строя. Более экономичны комплексы из небольших ветротурбин, объединяемых в одну систему.
Первая в нашей стране ветровая электростанция мощностью 8 кВт была сооружена в 1929-1930 гг. под Курском по проекту инженеров А.Г. Уфимцева и В.П. Ветчинкина. Через год в Крыму была построена более крупная ВЭС мощностью 100 кВт, которая была по тем временам самой крупной ВЭС в мире. Она успешно проработала до 1942 г., но во время войны была разрушена.
Значительные успехи в создании ВЭС были достигнуты за рубежом. Во многих странах Западной Европы построено довольно много установок по 100-200 кВт. Во Франции, Дании и в некоторых других странах были введены в строй ВЭС с номинальными мощностями свыше 1 МВт.
Одна из наиболее известных установок этого класса «Гровиан» была создана в Германии, ее номинальная мощность — 3 МВт. Но самое широкое развитие ветроэнергетика получила в США. Еще в 1941 г. там была построена первая ВЭС мощностью 1250 кВт, а сейчас общая мощность всех ВЭС в этой стране достигает 1300 МВт, причем среди них есть гиганты с мощностью до 4 МВт. Сегодня в некоторых промышленно развитых странах установленная мощность ВЭУ достигает заметных значений. Так, в США установлено более 1,5 млн кВт ВЭУ, в Дании ВЭУ производят около 3% потребляемой страной энергии; велика установленная мощность ВЭУ в Швеции, Нидерландах, Великобритании и Германии. При том нет никаких расходов на утилизацию отработанного топлива и нет загрязнения окружающей среды.
Однако ветровые источники энергии оказывают специфическое воздействие на окружающую среду, требуют огромных площадей.
Известно, что к работающему ветряку близко подходить нежелательно, и притом с любой стороны, так как при изменениях направления ветра направление оси ротора тоже изменяется.
Ветроагрегаты близко друг к другу ставить нельзя, так как они могут создавать взаимные помехи в работе, «отнимая ветер» один у другого. Минимальное расстояние между ветряками должно быть не менее их утроенной высоты.
Работающие ветродвигатели создают значительный шум, генерируют неслышимые ухом, но вредно действующие на людей инфразвуковые колебания с частотами ниже 16 Гц.
Ветряки распугивают птиц и зверей, нарушая их естественный образ жизни, а при большом их скоплении на одной площадке могут существенно исказить естественное движение воздушных потоков с непредсказуемыми последствиями. Во многих странах, в том числе в Ирландии, Англии и других, жители неоднократно выражали протесты против размещения ВЭС вблизи населенных пунктов и сельскохозяйственных угодий, а в условиях густо населенной Европы это означаетвезде.
Было выдвинуто предложение о размещении систем ветряков в открытом море. Так, в Швеции разработан проект, согласно которому предполагается в Балтийском море недалеко от берега установить 300 ветряков. На их башнях высотой 90 м будут вращаться двухлопастные пропеллеры с размахом лопастей 80 м. Стоимость строительства только первой сотни таких гигантов потребуется более 1 млрд долл, а вся система, на строительство которой уйдет минимум 20 лет, обеспечит производство всего 2% электроэнергии от уровня потребления в Швеции в настоящее время. Это пока проектируется, но в настоящее время в Швеции начато строительство одной ВЭС мощностью 200 кВт на расстоянии 250 м от берега, которая будет передавать энергию на землю по подводному кабелю. Аналогичные проекты были и у нас: предлагали устанавливать ветряки и на акватории Финского залива, и на Арабатской стрелке в Крыму. Помимо сложности и дороговизны подобных проектов, их реализация создала бы серьезные помехи судоходству, рыболовству, а также оказала бы все те же вредные экологические воздействия, о которых говорилось ранее. Поэтому и эти планы вызывают движения протеста. Например, шведские рыбаки потребовали пересмотра проекта строящейся в море ВЭС, так как, по их мнению, подводный кабель, да и сама станция будут плохо влиять на рыб, в частности, на угрей, мигрирующих в тех местах вдоль берега.
Неприятным побочным эффектом использования ветряков для сторонников экологически чистого хозяйства оказались биологические последствия. Союзы охраны природы отмечают, что многие перелетные птицы вынуждены менять свои маршруты, избегая ветряных парков — мельницы отпугивают птиц. В ряде случаев положение сложилось настолько серьезное, что местные экологи вынуждены были поставить вопрос о временном закрытии установок или о переводе их на более гибкий режим работы с учетом сезонных перемещений птиц.
Использование энергии солнца
Солнечная энергия обладает неоспоримыми преимуществами перед традиционными органическим и ядерным горючим. Это исключительно чистый вид энергии, который не загрязняет окружающую среду, а само ее использование не связано ни с какой биологической опасностью. Использование солнечной энергии в больших масштабах не нарушает сложившегося в эволюции энергетического баланса нашей планеты.
Это практически неисчерпаемый источник энергии. Ее можно использовать прямо (посредством улавливания техническими устройствами) или опосредованно через продукты фотосинтеза, круговорот воды, движение воздушных масс и другие процессы, которые обусловливаются солнечными явлениями.
Использование солнечного тепла - наиболее простой и дешевый путь решения отдельных энергетических проблем. Подсчитано, что в США для обогрева помещений и горячего водоснабжения расходуется около 25% производимой в стране энергии. В северных странах, в том числе и в России, эта доля заметно выше. Между тем, значительная доля тепла, необходимого для этих целей, может быть получена посредством улавливания энергии солнечных лучей. Эти возможности тем значительнее, чем больше прямой солнечной радиации поступает на поверхность Земли.
Отопление и горячее водоснабжение как низкотемпературные процессы преобразования солнечной энергии в теплоту могут быть осуществлены сравнительно простыми техническими средствами. Солнечные водонагреватели начинают использоваться для целей тепло- и горячего водоснабжения индивидуальных потребителей в южных климатических зонах.
Наиболее распространено улавливание солнечной энергии посредством различного вида коллекторов. В простейшем виде это темного цвета поверхности для улавливания тепла и приспособления для его накопления и удержания. Оба блока могут представлять единое целое. Коллекторы помещаются в прозрачную камеру, которая действует по принципу парника. Имеются также устройства для уменьшения рассеивания энергии (хорошая изоляция) и ее отведения, например, потоками воздуха или воды.
Еще более просты нагревательные системы пассивного типа. Циркуляция теплоносителей здесь осуществляется в результате конвекционных токов: нагретый воздух или вода поднимается вверх, а их место занимают более охлажденные теплоносители. Примером такой системы может служить помещение с обширными окнами, обращенными к солнцу, и хорошими изоляционными свойствами материалов, способными длительно удерживать тепло. Для уменьшения перегрева днем и теплоотдачи ночью используются шторы, жалюзи, козырьки и другие защитные приспособления. В данном случае проблема наиболее рационального использования солнечной энергии решается через правильное проектирование зданий. Некоторое удорожание строительства перекрывается эффектом использования дешевой и идеально чистой энергии.
Преобразование солнечной энергии в электрическую возможно посредством использования фотоэлементов, в которых солнечная энергия индуцируется в электрический ток без всяких дополнительных устройств. Солнечная энергия -практически неограниченный источник, мощность которого на поверхности Земли оценивается в 20 млрд кВт. Годовой поток солнечной энергии на Землю эквивалентен 1,2- 10й т условного топлива. Для сравнения можно указать, что мировые запасы органического топлива равняются всего 6 • 1012 т условного топлива.
Крупномасштабное производство электроэнергии на солнечных электростанциях имеет определенные трудности, поскольку источник солнечной энергии отличается низкой плотностью. Поэтому площадь для сбора солнечной энергии и ее концентрации на оптических системах доходит до нескольких десятков квадратных километров. Из-за большой стоимости единицы поверхности модулей концентратов создание мощных СЭС требует значительных затрат.
Энергия воды, океанических и термальных вод
Энергия, выделяемая при волновом движении масс воды в океане, действительно огромна. Средняя волна высотой 3 м несет примерно 90 кВт энергии на 1 м2 побережья. Однако практическая реализация данной энергии вызывает большие сложности. В настоящее время эта энергия используется в незначительном количестве из-за высокой себестоимости ее получения.
Недостаточно до настоящего времени используются энергетические ресурсы средних и малых рек (длина от 10 до 200 км). Только в России таких рек имеется более 150 тысяч. В прошлом именно малые и средние реки являлись важнейшим источником получения энергии. Небольшие плотины на реках не столько нарушают, сколько оптимизируют гидрологический режим рек и прилежащих территорий. Их можно рассматривать как пример экологически обусловленного природопользования, мягкого вмешательства в природные процессы. Водохранилища, создававшиеся на малых реках, обычно не выходили за пределы русел. Такие водохранилища гасят колебания воды в реках и стабилизируют уровни грунтовых вод под прилежащими пойменными землями. Это благоприятно сказывается на продуктивности и устойчивости как водных, так и пойменных экосистем.
Имеются расчеты, что на мелких и средних реках можно получать не меньше энергии, чем ее получают на современных крупных ГЭС. В настоящее время имеются турбины, позволяющие получать энергию, используя естественное течение рек без строительства плотин. Такие турбины легко монтируются на реках и при необходимости перемещаются в другие места. Хотя стоимость получаемой на таких установках энергии заметно выше, чем на крупных ГЭС, ТЭС или АЭС, но высокая экологичность делает целесообразным ее получение.
Несравнимо более реальны возможности использования геотермальных ресурсов. В данном случае источником тепла являются разогретые воды, содержащиеся в недрах земли. В отдельных районах такие воды изливаются на поверхность в виде гейзеров (например, на Камчатке)! Геотермальная энергия может использоваться как в виде тепловой, так и для получения электричества.
Ведутся также опыты по использованию тепла, содержащегося в твердых структурах земной коры. Такое тепло из недр извлекается посредством закачки воды, которую затем используют так же, как и другие термальные воды.
Уже в настоящее время отдельные города или предприятия обеспечиваются энергией геотермальных вод. Это, в частности, относится к столице Исландии — Рейкьявику. В начале 80-х годов в мире производилось на геотермальных электростанциях около 5000 МВт электроэнергии (примерно 5 АЭС). В России значительные ресурсы геотермальных вод имеются на Камчатке, но используются они пока в небольшом объеме. В бывшем СССР за счет этого вида ресурсов производилось только около 20 МВт электроэнергии.
Достоинства использования глубинного тепла земли очевидны. ГеоТЭС может функционировать десятки лет, используя практически неугасаемые тепловые котлы. Себестоимость электроэнергии, получаемой таким образом, несмотря на значительные первоначальные затраты, вполне сравнима с той, которую мы имеем на тепловых и атомных электростанциях. Кроме того, ГеоТЭС не наносит урона экологии, не загрязняет выбросами окружающую среду.
Использование тепла земных недр весьма перспективно с позиций охраны окружающей среды. В настоящее время во многих странах мира для выработки электроэнергии и отопления зданий, подогрева теплиц и парников используется тепло горячих источников. Речь идет об огромных резервах экологически чистой тепловой энергии, о возможности с большим экономическим эффектом заменить до 1,5 млн т органического топлива в важнейших отраслях, включая сельское и коммунальное хозяйства.
Геотермальные электростанции по компоновке, оборудованию, эксплуатации мало отличаются от традиционных ТЭС и практически не вызывают экологических последствий. Температура месторождений геотермальных вод Камчатки доходит до 257°С, глубина залегания - 1200 м. Выявленные в этом районе тепловые ресурсы могли бы обеспечить работу геотермальных электростанций общей мощностью 350-500 МВт.
Сравнительные характеристики экономической эффективности нетрадиционных энергоисточников приводятся в таблице 5.
Таблица 5
Сравнительная характеристика различных способов
получения энергии
Тип |
Удельный съем энергии с единицы площади занимаемой земли (Вт/м2) |
Удельные |
Ветровая |
0,4 |
4,5 |
Солнечная |
30 |
3 |
Геотермальная |
4 |
3 |
Атомная |
1300 |
1 |
Заключение
На основании вышеизложенного можно сделать следующие выводы:
1. На современном этапе тепловые электростанции выбрасывают в атмосферу около 20% от общего количества всех вредных отходов. Они существенно влияют на окружающую среду района их расположения и на состояние биосферы в целом. Наиболее вредны конденсационные электрические станции, работающие на низкосортных видах топлива.
2. Одним из важнейших воздействий гидроэнергетики на окружающую среду является отчуждение значительных площадей плодородных земель под водохранилища. В России, где за счет использования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоплено не менее 6 млн га земель. На их месте уничтожены естественные экосистемы. Однако ГЭС обладает жизнесберегающей функцией - выработка каждого млрд кВтч электроэнергии на ГЭС вместо ТЭС приводит к уменьшению смертности населения на 100-226 чел./год.
3. Ядерная энергетика в настоящее время может рассматриваться как наиболее перспективная. Надежность, безопасность и экономическая эффективность атомных электростанций опирается не только на жесткую регламентацию процесса функционирования АЭС, но и на сведение до абсолютного минимума влияния АЭС на окружающую среду. Оценивая перспективы развития мировой атомной энергетики, большинство авторитетных международных организаций, связанных с исследованием глобальных топливно-энергетических проблем, предполагает, что после 2010-2020 гг. в мире вновь возрастет потребность в широком строительстве АЭС.
4. Решая задачу уменьшения воздействия на окружающую среду традиционных методов получения энергии наука и производство изучают возможности получения энергии за счет альтернативных (нетрадиционных) ресурсов, таких, как энергия ветра, солнца, геотермальная и энергия волн и других источников, которые относятся к неисчерпаемым и экологически чистым.
Литература:
1. Хван Т.А. Промышленная экология. М., Феникс, 2003
2. Дьяков А.Ф. Основные направления развития энергетики России. М., 2001