Загрязнение почв пестицидами

Загрузить архив:
Файл: ref-22191.zip (27kb [zip], Скачиваний: 301) скачать

ВВЕДЕНИЕ

Мы привыкли так часто употреблять фразы типа "Земля - наше главное богатство" или "Земля - наша мать кормилица", что порой и не задумываемся об их истинном значении. А ведь плодородные земли, подаренные человеку, - это действительно сокровище, не менее, а даже более ценное, чем угольные пласты, нефтяные залежи, золотые жилы. Поэтому защита и сохранение среды, в которой мы живет - это задача номер один человечества.

На сегодняшний день в мире существует много экологических проблем, начиная от исчезновения некоторых видов растений и животных, заканчивая угрозой вырождения человеческой расы. На данный момент в мире существует много теорий, в которых большое внимание уделяется нахождению наиболее рациональных путей их решения. Но, к сожалению, на бумаге все оказывается значительно проще, чем в жизни.

Во многих странах проблема экологии стоит на первом месте, но, увы, не в нашей стране, по крайней мере, раньше. Но сейчас ей начинают уделять все больше внимания, принимаются новые экстренные меры.

Земельные ресурсы играют большую роль в агропромышленном комплексе России. В настоящее время земельные ресурсы сильно истощены, причина тому - экология и связанные с ней проблемы. В данной работе сделана попытка изучить одну из наиболее важных на сегодняшний день проблем землепользования – загрязнение почв пестицидами и обозначить некоторые пути ее решения.

Почвенный покров вместе с его микромиром играет роль универсального биологического сорбента, тарификатора и нейтрализатора загрязнений, минерализатора различных органических веществ. Свойства почвы во многом определяются составом и численностью населяющей ее микрофлоры и микрофауны, устойчивостью почвенных микроорганизмов к внешним воздействиям, в том числе и к воздействию пестицидов. Бесконтрольное применение пестицидов может уже при жизни нашего поколения вызвать необратимые качественные сдвиги в среде обитания человека.

Согласно данным американских ученых, по степени загрязнения биосферы пестициды в целом занимают 9-е место после промышленных загрязнений газами, ртутью, свинцом, кадмием, нефтью и фосфатами – главным загрязнителем вод в реках и озерах. Тем не менее необходимо располагать системой мероприятий, позволяющей свести к минимуму или совершенно исключить одно из нежелательных последствий применения пестицидов – загрязнение почвенного покрова. [1, стр. 34]


1. Современное состояние почвенного покрова

Почвенный покров Земли играет решающую роль в обеспечении человечества продуктами питания и сырьем для жизненно важных отраслей промышленности. Использование с этой целью продукции океана, гидропоники или искусственно синтезируемых веществ не может, по крайней мере в обозримом будущем, заменить продукцию наземных экосистем (продуктивность почв). Поэтому непрерывный контроль за состоянием почв и почвенного покрова – обязательное условие получения планируемой продукции сельского и лесного хозяйства.

Вместе с тем почвенный покров является естественной базой для поселения людей, служит основой для создания рекреационных зон. Он позволяет создать оптимальную экологическую обстановку для жизни, труда и отдыха людей. От характера почвенного покрова, свойств почвы, протекающих в почвах химических и биохимических процессов зависят чистота и состав атмосферы, наземных и подземных вод. Почвенный покров – один из наиболее мощных регуляторов химического состава атмосферы и гидросферы. Почва была и остается главным условием жизнеобеспечения наций и человечества в целом. Сохранение и улучшение почвенного покрова, а, следовательно, и основных жизненных ресурсов в условиях интенсификации сельскохозяйственного производства, развития промышленности, бурного роста городов и транспорта возможно только при хорошо налаженном контроле за использованием всех видов почвенных и земельных ресурсов. [5, стр. 137]

Почва является наиболее чувствительной к антропогенному воздействию. Из всех оболочек Земли почвенный покров – самая тонкая оболочка, мощность наиболее плодородного гумусированного слоя даже в черноземах не превышает, как правило, 80-100 см, а во многих почвах большинства природных зон она составляет всего лишь 15-20 см. Рыхлое почвенное тело при уничтожении многолетней растительности и распашке легко подвергается эрозии и дефляции.

При недостаточно продуманном антропогенном воздействии и нарушении сбалансированных природных экологических связей в почвах быстро развиваются нежелательные процессы минерализации гумуса, повышается кислотность или щелочность, усиливается соленакопление, развиваются восстановительные процессы – все это резко ухудшает свойства почвы, а в предельных случаях приводит к локальному разрушению почвенного покрова. Высокая чувствительность, уязвимость почвенного покрова обусловлены ограниченной буферностью и устойчивостью почв к воздействию сил, не свойственных ему в экологическом отношении. [2, стр. 54]

Даже чернозем потерпел за последние 100 лет весьма существенные изменения, вызывающие тревогу и обоснованные опасения за его дальнейшую судьбу. Все в более широких масштабах проявляется загрязнение почвы тяжелыми металлами, нефтепродуктами, детергентами, усиливается влияние азотной и серной кислот техногенного происхождения, ведущие к формированию техногенных пустынь в окрестностях некоторых промышленных предприятий.

Для примера можно привести статистику загрязнения почв пестицидами в отдельных регионах России:

Регион

Доля проб почв, загрязненных выше ПДК, %

Пестицид

Центрально-черноземный район

15

Сумма ДДТ

Московская область

10

Сумма ДДТ

Иркутская область

90

2.4-Д

Волгоградская область

>90

Трефлан

Новосибирская область

Отдельные зоны до 20-192 ПДК

Сумма ДДТ

Ростовская область

10

Сумма ДДТ

30

Трефлан

Краснодарский край

10

Сумма ДДТ

64

Трефлан

Из этой таблицы видно что предельно допустимая концентрация внесения пестицидов в почву превышена, например, в Волгоградской области (>90%).

Восстановление нарушенного почвенного покрова требует длительного времени и больших капиталовложений. [3, стр. 157]


2. Пестициды

2.1 Общие сведения

Пестициды – это в основном органические соединения с малым молекулярным весом и различной растворимостью в воде. Химический состав, их кислотность или щелочность, растворимость в воде, строение, полярность, величина и поляризация молекул – все эти особенности вместе или каждая в отдельности оказывает влияние на процессы адсорбции-десорбции почвенными коллоидами. Принимая во внимание названные особенности пестицидов и сложный характер связей в процессе адсорбции-десорбции коллоидами они могут быть разделены на два больших класса: полярные и неполярные, а не вошедшие в эту классификацию, например, хлорорганические инсектициды – на ионные и неионные.

Пестициды, которые содержат кислотные или основные группы, либо ведут себя при диссоциации как катионы, составляют группу ионных соединений. Пестициды, не обладающие ни кислой, ни щелочной реакцией составляют группу неионных соединений.

На характер химических соединений и способность почвенных коллоидов к адсорбции и десорбции оказывает влияние: природа функциональных групп и групп замещения по отношению к функциональным группам и степень насыщенности молекулы. На адсорбцию молекул пестицидов почвенными коллоидами значительное влияние оказывает характер молекулярных зарядов, причем определенную роль играет полярность молекул. Неравномерное распределение зарядов увеличивает диссиметрию молекулы и ее реактивность.

Почва в основном выступает в качестве преемника пестицидов, где они разлагаются и откуда постоянно перемещаются в растения или окружающую среду, либо в качестве хранилища, где некоторые из них могут существовать много лет спустя после внесения. [7, стр. 93-94]


2.2 Классификация пестицидов

К пестицидам (от лат. реstis - зараза, caedo - убиваю) относится комплекс химических препаратов, предназначенных для борьбы с животными и растениями - это различные инсектициды, гербициды, фунгициды и т.п. Подобные вещества в больших количествах поступают почти во все экосистемы.

В зависимости от характера использования пестициды разделяются на следующие группы:

Гербициды - для борьбы с сорными растениями

Альгициды - для уничтожения водорослей и другой водной растительности

Арборициды - для уничтожения нежелательной древесной и кустарниковой

растительности

Фунгициды - для борьбы с грибными болезнями растений

Бактерициды - для борьбы с бактериями и•бактериальными болезнями

Инсектициды - для борьбы с вредными насекомыми

Акарициды - для борьбы с клещами

Зооциды - для борьбы с грызунами

Лимациды - для борьбы с моллюсками

Нематоциды - для борьбы с круглыми червями

Афициды - для борьбы с тлями

К пестицидам относятся также химические средства торможения роста растений, препараты для удаления листьев (дефолианты) и подсушивания растений (десиканты). [6, стр. 12]

2.3 Гербициды

Наиболее обширную группу веществ среди пестицидов как по масштабам практического применения (40-50%, так и по ассортименту выпускаемых препаратов (около 40%) составляют гербициды, (от лат. herbum- трава, caedo - убиваю).

По характеру действия на растения гербициды делятся на две подгруппы:

1. Сплошные, действующие на все виды растений; такие гербициды применяются для уничтожения нежелательной растительности вокруг промышленных объектов, на лесных, вырубках, в питомниках, каналах, водоемах, обочинах шоссейных дорог и т.д.

2. Избирательные (селективные)„ опасные для одних видов растений и безопасные для других; используются для уничтожения сорняков в агроценозах.

Деление условно, так как одни и те же вещества в зависимости от применяемых концентраций и норм расхода на единицу обрабатываемой площади могут проявлять себя и как сплошные, и как избирательные гербициды.[6, стр. 46]


3. Применение пестицидов

Применение пестицидов резко снижает потери урожаев сельскохозяйственных культур, сокращает затраты в сельском хозяйстве в 2-3 раза, позволяет ежегодно экономить сельскохозяйственную продукцию на 10-12 млрд.р. Высокая экономическая эффективность пестицидов обусловливает неуклонный рост масштабов их применения. Годовое производство пестицидов в мире к настоящему времени превысило 2 млн.т; мировой ассортимент пестицидных препаратов насчитывает более 100 тыс. наименований на основе более чем 700 химических веществ, принадлежащих к самым различным классам органических и неорганических соединений.

Признавая несомненный положительный эффект химического способа борьбы с сорной растительностью, следует учитывать возможное побочное действие гербицидов на другие компоненты природных экосистем: животный мир, культурные и полезные дикорастущие растения, атмосферу, почвы, водоемы. Нежелательные последствия возникают чаще всего при систематической обработке больших площадей и связаны с появлением как токсикологических, так и экологических проблем. Наибольшую опасность представляют стойкие пестициды и их метаболиты, способные накапливаться и сохраняться в природной среде до нескольких десятков лет. При определенных условиях метаболиты пестицидов могут образовывать метаболиты второго порядка, роль, значение и влияние которых на окружающую среду во многих случаях остаются неизвестными. [4, стр. 206]


4. Поведение пестицидов в почве

Пестициды – тонкодисперсные вещества – в почве подвержены многочисленным воздействиям биотического и небиотического характера, некоторые определяют их поведение, преобразование и, наконец, минерализацию. Тип и скорость преобразований зависит от: химической структуры действующего вещества и его устойчивости, механического состава и строения почв, химических свойств почв, состава флоры и фауны почв, интенсивности влияния внешних воздействий и системы ведения сельского хозяйства.

Для правильного понимания поведения пестицидов и любых других химических соединений в почве необходимо рассмотреть хотя бы важнейшие факторы, влияющие на миграцию, разложение, активность и продолжительность их сохранения в почве.

Вещества с высоким давлением паров сравнительно легко испаряются с поверхности почвы и далее в зависимости от строения с большей или меньшей скоростью подвергаются фотохимическому разложению или окислению под влиянием солнечного освещения, причем чем выше температура, тем быстрее происходит испарение вещества и его фотохимическое разложение. На скорость испарения существенное влияние оказывают также скорость движения воздуха над поверхностью почвы и состав почвы. Состав почвы оказывает существенное влияние на испарение вещества, поскольку меняется сорбирующая способность, и соответственно чем выше такая сорбирующая способность почвы для данного вещества, тем медленнее идет из данной почвы его испарение. В такой же степени сорбирующая способность почвы оказывает влияние и на вымываемость вещества в нижние слои почвы, как это уже отмечалось выше.

Разумеется, на персистентность пестицидов в почве большое влияние оказывает химическая стабильность вещества, в частности легкость гидролиза. Гидролиз водой является одним из наиболее важных процессов, который в большинстве случаев приводит к разложению пестицидов с образованием менее токсичных соединений. Для легко гидролизуемых веществ большое значение имеет влажность почвы: наиболее легко гидролиз пестицидов протекает во влажных почвах. Многие вещества, кроме того, легко окисляются кислородом воздуха; это особенно часто происходит в случае производных тио- и дитиофосфорной и фосфоновой кислот, а также при наличии в молекуле пестицида сульфидных и других легко окисляющихся групп. Отметим, что простое окисление в случае производных тионфосфорной и тиолфосфоновой кислот, как правило, приводит к получению более токсичных для позвоночных соединений, но после их гидролиза образуются вполне безопасные вещества.

Большое влияние на персистентность химических соединений в почве оказывают различные почвенные микроорганизмы, для которых пестициды нередко являются источником углерода. Даже очень стойкие в химическом отношении соединения разлагаются микроорганизмами почвы. Во многих случаях такое разложение начинается не сразу, а через некоторое время, необходимое для приспособления микроорганизмов к разрушению данного химического соединения. Наиболее легко разлагаются микроорганизмами почвы соединения алифатического ряда, а также гидроксилсодержащие соединения. Алкоксилированные ароматические соединения разлагаются несколько медленнее, но все же быстрее, чем вещества, не содержащие в ароматическом ядре в качестве заместителя кислорода, серы или азота. Как правило, ароматические соединения, не содержащие таких заместителей (групп), под влиянием микроорганизмов гидроксилируются и далее происходит разрушение ароматического ядра. Отметим, что и процесс разложения фенолов, аминов и сульфидов ароматического ряда также в большинстве случаев начинается с гидроксилирования ароматического ядра.

Большинство гетероциклических соединений также сравнительно легко разрушается микроорганизмами почвы. Однако некоторые классы гетероциклических соединений, как, например, пиримидины, бензимидазолы и другие, разрушаются очень медленно.

В разрушении химических соединений в почве принимают участие самые различные микроорганизмы, в том числе бактерии, грибы и актиномицеты.

Разрушение химических соединений в почве протекает и под влиянием растений, которые могут поглощать из почвы некоторые вещества и перерабатывать их в простейшие продукты или некоторые другие метаболиты, образующие с веществами растений коньюгаты.

Как уже отмечалось, на продолжительность сохранения пестицидов в почве существенное влияние оказывает температура: чем выше температура почвы, тем быстрее происходит разложение препаратов, как под влиянием химических факторов (гидролиз, окисление), так и под влиянием микроорганизмов и других обитателей почвы.

Как видно из табл. 1, ускорение разложения пестицидов с температурой зависит также от природы вещества, однако во всех случаях повышение температуры почвы существенно ускоряет процесс разложения пестицидов. В связи с этим при применении пестицидов необходимо учитывать не только характер почвы, но и температуру и влажность.

Таблица 1. Распад некоторых пестицидов в почве

Пестицид

Период полураспада, месяцы

при 15 ºС

при 30 ºС

Аметрин

6,0

4,5

Амитрол

1,5

1,0

Атразин

6,0

2,0

Вромацил

7,0

4,5

2,4-Д (кислота)

-

0,1

Диурон

7,0

5,5

ИФК

0,4

0,2

Монурон

5,0

4,1

2,3,6-ТБК

-

8,0

Теноран

3,0

1,0

Тербацил

7,5

5,0

Фенурон

4,5

2,2

Хлор-ИФК

3,0

1,5

Различные штамы микроорганизмов разрушают пестициды с различной скоростью. Большое значение имеет также аэрация почвы. Некоторые вещества, например ДДТ, в анаэробных условиях разрушаются быстрее, чем в аэробных, что связано с различным механизмом разрушения. Если в обычных условиях первой стадией разрушения ДДТ является образование 1,1-дихлор-2,2-бис (4-хлорфенил) этилена, то в анаэрооных условиях происходит восстановление ДДТ до ДДД, разрушение которого протекает значительно быстрее.

Для правильного понимания поведения того или иного пестицида в почве необходимо изучение его метаболизма под влиянием почвенных микроорганизмов в различных условиях, причем даже гомологи одного и того же класса химических соединений часто в почве ведут себя различно, не только по персистентности, но и по направлениям разложения в разных условиях. Особенно сильно отличается поведение метальных гомологов различных классов органических соединений. Так, метиловые эфиры кислот фосфора являются сильными метилирующими средствами и в связи с этим легко отщепляют О—СН3-группы, превращаясь в мало токсичные для позвоночных и других животных кислые эфиры. Метильная группа ароматических соединений легко окисляется до карбоксильной, что также приводит к снижению токсичности соединения, хотя в некоторых случаях окисление метильной группы ароматических соединений приводит к более токсичным соединениям. Важное значение имеет и окисление метильной группы, связанной с азотом. В этом случае в результате окисления происходит деметилирование, приводящее в большинстве случаев к менее токсичным продуктам, которые далее распадаются с выделением аммиака или азота.

По скорости разложения в почве пестициды предложено разделить на следующие шесть групп.

1) Препараты с продолжительностью действия более 18 месяцев (большинство хлорорганических пестицидов).

2) Препараты с продолжительностью действия около 18 месяцев (некоторые производные мочевины, пиклорам, симазин и другие триазины).

3) Пестициды с продолжительностью сохранения в почве до 12 месяцев (производные бензойной кислоты, амиды кислот).

4) Препараты с продолжительностью сохранения в почве до 6 месяцев (нитроанилины, акрилоксиалканкарбоновые кислоты и другие).

5) Пестициды с продолжительностью сохранения в почве более 3 месяцев (производные карбаминовой кислоты, алифатические карбоновые кислоты и другие).

6) Пестициды с продолжительностью сохранения в почве менее 3 месяцев (органические соединения фосфора и другие).

Совершенно ясно, что такое деление носит условный характер, так как персистентность пестицидов, как указывалось выше, зависит не только от их строения, но и от активности почвенных микроорганизмов и других факторов. Точно так же, как и среди отдельных перечисленных выше классов химических соединений, имеются вещества с большей или меньшей персистентностью.

Из изложенного видно, что в важнейших экосистемах земного шара с большей или меньшей скоростью происходит разложение органических пестицидов до простейших нетоксичных соединений. Однако для избежания их накопления в окружающей среде применение любых химических соединений должно быть строго регламентировано. [5, стр. 25-31]

4.1 Адсорбция пестицидов

Адсорбция пестицидов в почве – комплексный процесс, зависящий от многочисленных факторов. Она играет важную роль в перемещении пестицидов и служит для временного поддержания в парообразном или растворенном состоянии или в виде суспензии на поверхности почвенных частиц. Особо важную роль в адсорбции пестицидов играют ил и органическое вещество почвы, составляющие “коллоидальный комплекс” почвы. Адсорбция сводится к ионно-катионному обмену отрицательно заряженных илистых частиц и кислотных групп гумусовых веществ, либо анионному, благодаря присутствию гидроксидов металлов (Al(OH)3 и Fe(OH)3 ) или происходит в форме молекулярного обмена. Если адсорбированные молекулы нейтральны, то они удерживаются на поверхности илистых частиц и гумусовых коллоидов двухполюсными силами, водородными связями и дисперсными силами. Адсорбция играет первостепенную роль в накоплении пестицидов в почве, которые адсорбируются ионным обменом или в форме нейтральных молекул в зависимости от их природы. [9, стр. 37]

4.2 Миграция пестицидов

Передвижение пестицидов в почве происходит с почвенным раствором или одновременно с перемещением коллоидных частиц, на которых они адсорбированы. Это зависит как от процессов диффузии так и массового тока (разжижение), которые представляют собой обычный способ вымывания.

При поверхностном стоке, вызываемом осадками или орошением, пестициды передвигаются в растворе или суспензии, скапливаясь в углублениях почвы. Данная форма передвижения пестицидов зависит от рельефа местности, эродированности почв, интенсивности осадков, степени покрытия почв растительностью, периода времени, прошедшего с момента внесения пестицида. Количество пестицидов, передвигающихся с поверхностным стоком, составляет более 5% от внесенного в почву. По данным румынского НИИ почвоведения и агрохимии на стоковых площадках в экспериментальном центре Алдены в результате промывных дождей одновременно с почвой происходит и потеря триазина. На стоковых площадках с уклоном 2,5% в Билчешть-Арджече в поверхностных водах были обнаружены остаточные количества ГХЦГ от 1,7 до 3,9 мг/кг, а в суспензии – от 0,041 до 0,085 мг/кг ГХЦГ и от 0,009 до 0,026 мг/кг ДДТ.

Вымывание пестицидов по профилю почв заключается их передвижении вместе с циркулирующей в почве водой, что обусловлено в основном физико-химическими свойствами почв, направлением движения воды, а также процессами адсорбции и десорбции пестицидов коллоидными частицами почвы. Так, в почве, ежегодно в течение длительного времени обрабатываемой ДДТ в дозе 189 мг/га, через 20 лет обнаружено 80% этого пестицида, проникшего на глубину 76 см.

По данным исследований, проведенных в Румынии, не трех различных почвах (аллювиальной очищенной, типичной солончаковой, мощном черноземе), где проводились обработки хлорорганическими инсектицидами (ГЦХГ и ДДТ) в течение 25 лет (при орошении в течение последнего десятилетия), остаточные количества пестицидов достигли глубины 85 см в типичном солончаке, 200 см в аллювиальной очищенной почве и 275 см в перерытом черноземе при концентрации 0,067 мг/кг ГЦХГ и соответственно 0,035 мг/кг ДДТ на глубине 220 см. [9, стр. 51-52]

4.3 Разложение пестицидов

На пестициды, попавшие в почву, оказывают влияние различные факторы как в период их эффективности, так и в дальнейшем, когда препарат уже становится остаточным. Пестициды в почве подвержены разложению, обусловленному небиотическими и биотическими факторами и процессами.

Физические и химические свойства почв влияют на преобразования, находящихся в ней пестицидов. Так глины, окислы, гидроокислы и ионы металлов, а также органическое вещество почвы выполняют роль катализаторов во многих реакциях разложения пестицидов. Гидролиз пестицидов идет при участии грунтовой воды. В результате реакции со свободными радикалами гумусовых веществ происходит изменение составных частиц почвы и молекулярного строения пестицидов.

Во многих работах подчеркивается большое значение почвенных микроорганизмов в разложении пестицидов. Существует очень мало действующих веществ, не разлагающихся биологическим путем. Продолжительность разложения пестицидов микроорганизмами может колебаться от нескольких дней до нескольких месяцев, а иногда и десятков лет, в зависимости от специфики действующего вещества, видов микроорганизмов, свойств почв. Разложение действующих веществ пестицидов осуществляется бактериями, грибами и высшими растениями.

Обычно разложение пестицидов, особенно растворимых, реже адсорбированных почвенными коллоидами, происходит при участии микроорганизмов.

Грибы участвуют главным образом в разложении слаборастворимых и слабоадсорбируемых почвенными коллоидами гербицидов. [9, стр. 56]


5. Выявление загрязнения почв

Выявление загрязнения почв тяжелыми металлами производят прямыми методами отбора почвенных проб на изучаемых территориях и их химического анализа на содержание тяжелых металлов. Эффективно также использовать для этих целей ряд косвенных методов: визуальная оценка состояния фитогенезов, анализ распространения и поведения видов – индикаторов среди растений, беспозвоночных и микроорганизмов.

Для выявления пространственных закономерностей проявления загрязнения почв используют сравнительно-географический метод, методы картирования структурных компонентов биогеоценозов, в том числе и почв. Такие карты не только регистрируют уровень загрязнения почв тяжелыми металлами и соответствующие изменения в напочвенном покрове, но позволяют прогнозировать изменение состояния природной среды. Рекомендовано отбирать образцы почв и растительности по радиусу от источника загрязнения с учетом господствующих ветров по маршруту протяженностью 25-30 км.

Расстояние от источника загрязнения для выявления ореола загрязнения может колебаться в значительных пределах и в зависимости от интенсивности загрязнения и силы господствующих ветров может изменяться от сотен метров до десятков километров.

В США на борту ресурсного спутника ЭРТС-1 были установлены датчики для выяснения степени повреждения веймутовой сосны сернистым газом и почвы цинком. Источником загрязнения был цинкоплавильный завод, действующий с дневным выбросом цинка в атмосферу 6,3-9 тонн. Зарегистрирована концентрация цинка, равная 80 тыс. мкг/г в поверхностном слое почвы в радиусе 800 м от завода. Растительность вокруг завода погибла в радиусе 468 гектаров. Сложность использования дистанционного метода заключается в интеграции материалов, в необходимости при расшифровке полученных сведений серии контрольных тестов в районах конкретного загрязнения. [1, стр. 29]

Выявление уровня токсичности тяжелых металлов непросто. Для почв с разными механическими составами и содержанием органического вещества этот уровень будет неодинаков. В настоящее время сотрудниками институтов гигиены предприняты попытки определить ПДК металлов в почве. В качестве тест-растений рекомендованы ячмень, овес и картофель. Токсичным уровень считался тогда, когда происходит снижение урожайности на 5-10%. Предложены ПДК для ртути – 25 мг/кг, мышьяка – 12-15, кадмия – 20 мг/кг. Установлены некоторые губительные концентрации ряда тяжелых металлов в растениях (г/млн.): свинец – 10, ртуть – 0,04, хром – 2, кадмий – 3, цинк и марганец – 300, медь – 150, кобальт – 5, молибден и никель – 3, ванадий – 2. [8, стр. 24]


6. Последствия применения пестицидов

Последствия неумеренного применения пестицидов могут быть самыми неожиданными, а главное - биологически непредсказуемыми; на смену одним видам вредных организмов часто приходят другие, которые вырабатывают иммунитет и способны выживать даже после самых эффективных обработок. Для преодоления иммунитета устойчивых особей к пестицидам приходится увеличивать дозы препаратов, что усиливает опасность загрязнения окружающей среды. Вследствие миграции пестицидов с воздушными, водными потоками ила биологического круговорота веществ последствия их токсического действия могут обнаруживаться на территории, где химикаты никогда не применяли.

Возрастание масштабов применения пестицидов, в частности гербицидов, во всем мире ставит перед исследователями ответственную задачу детального и всестороннего изучения и прогнозирования всевозможных изменений, возникающих в биосфере, и необходимость разработки эффективных мероприятий по предупреждению нежелательных последствий интенсивной химизации, либо по управлению функционированием экосистем в условиях загрязнения.

Вредное действие инсектицидов заключается в уничтожении полезных или хозяйственно-нейтральных видов и обеднений экосистемы, также они служат причиной появления устойчивых популяций вредителей, от которых становятся все труднее избавляться; они накапливаются в экосистемах и могут сохраняться в них в течение нескольких лет,

В настоящее время в результате интоксикации хлорорганическими препаратами сильно сократилась численность птиц, особенно хищных. Особенно токсичны инсектициды для плотоядных животных, так как они постепенно концентрируются в их организмах по мере продвижения к конечным звеньям пищевых цепей. Опасность заключается также в том, что повторное введение мелких доз влечет развитие скрытой хронической интоксикации, которая с трудом поддается диагностике. Инсектициды действуют как кумулятивные яды. [2, стр. 127-128]


7. Защита почв от загрязнения

Защита почв от загрязнения тяжелыми металлами базируется на совершенствовании производства. Например, на производство 1 т хлора при одной технологии расходуют 45 кг ртути, а при другой – 14-18 кг. В перспективе считают возможным снизить эту величину до 0,1 кг.

Новая стратегия охраны почв от загрязнения тяжелыми металлами заключена также в создании замкнутых технологических систем, в организации безотходных производств. Отходы химической и машиностроительной промышленности также представляют собой ценное вторичное сырье. Так отходы машиностроительных предприятий являются ценным сырьем для сельского хозяйства из-за фосфора.

В настоящее время поставлена задача обязательной проверки всех возможностей утилизации каждого вида отходов, прежде их захоронения или уничтожения.

При атмосферном загрязнении почв тяжелыми металлами, когда они концентрируются в больших количествах, но в самых верхних сантиметрах почвы, возможно удаление этого слоя почвы и его захоронение. [3, стр. 87]

В последнее время рекомендован ряд химических веществ, которые способны инактивировать тяжелые металлы в почве или понизить их токсичность. В ФРГ предложено применение ионообменных смол, образующих хелатные соединения с тяжелыми металлами. Их применяют в кислотной и солевой формах или в смеси той и другой форм.

В Японии, Франции, ФРГ и Великобритании одна из японских фирм запатентовала способ фиксирования тяжелых металлов меркапто-8-триазином. При использовании этого препарата кадмий, свинец, медь, ртуть и никель прочно фиксируются в почве в виде нерастворимой и недоступной для растений форм.

Известкование почв уменьшает кислотность удобрений и растворимость свинца, кадмия, мышьяка и цинка. Поглощение их растениями резко уменьшается. Кобальт, никель, медь и марганец в нейтральной или слабощелочной среде также не оказывают токсического действия на растения.

Органические удобрения, подобно органическому веществу почв, адсорбируют и удерживают в поглощенном состоянии большинство тяжелых металлов. Внесение органических удобрений в высоких дозах, использование зеленых удобрений, птичьего помета, муки из рисовой соломы снижают содержание кадмия и фтора в растениях, а также токсичность хрома и других тяжелых металлов. [8, стр. 538]

Оптимизация минерального питания растений путем регулирования состава и доз удобрений также снижает токсическое действие отдельных элементов. В Англии в почвах, зараженных свинцом, мышьяком и медью, задержка появления всходов снималась при внесении минеральных азотных удобрений. Внесение повышенных доз фосфора уменьшало токсичное действие свинца, меди, цинка и кадмия. При щелочной реакции среды на заливных рисовых полях внесение фосфорных удобрений вело к образованию нерастворимого и труднодоступного для растений фосфата кадмия.

Однако, известно, что уровень токсичности тяжелых металлов неодинаков для разных видов растений. Поэтому снятие токсичности тяжелых металлов оптимизацией минерального питания должно быть дифференцировано не только с учетом почвенных условий, но и вида и сорта растений.

Среди естественных растений и сельскохозяйственных культур выявлен ряд видов и сортов, устойчивых к загрязнению тяжелыми металлами. К ним относятся хлопчатник, свекла и некоторые бобовые. Совокупность предохранительных мер и мер по ликвидации загрязнения почв тяжелыми металлами дает возможность защитить почвы и растения от токсического их воздействия. [5, стр. 73]

Одно из основных условий охраны почв от загрязнения биоцидами – создание и применение менее токсичных и менее стойких соединений и внесение их в почву и уменьшение доз их внесения в почву. Существует несколько способов, позволяющих уменьшить дозу биоцидов без снижения эффективности их возделывания:

·сочетание применения пестицидов с другими приемами. Интегрированный метод борьбы с вредителями – агротехнический, биологический, химический и т.д. При этом ставится задача не уничтожить целый вид целиком, а надежно защитить культуру. Украинские ученые применяют микробиопрепарат в совокупности с небольшими дозами пестицидов, который ослабляет организм вредителя и делают его более восприимчивым к заболеваниям;

·применение перспективных форм пестицидов. Использование новых форм пестицидов позволяет существенно снизить норму расхода действующего вещества и свести к минимуму нежелательные последствия, в том числе и загрязнение почв;

·чередование применения токсикантов с неодинаковым механизмом действия. Такой способ внесения химических средств борьбы предотвращает появление устойчивых форм вредителей. Для большинства культур рекомендуют 2-3 препарата с неодинаковым спектром действия.

При обработке почвы пестицидами лишь небольшая часть их достигает мест приложения токсического действия растений и животных. Остальная часть накапливается на поверхности почв. Степень загрязнения почв зависит от многих причин и прежде всего от стойкости самого биоцида. Под стойкостью биоцида понимают способность токсиканта противостоять разлагающему действию физических, химических и биологических процессов. [1 стр. 48-49]


ЗАКЛЮЧЕНИЕ

В России и во всем мире придается большое значение охране окружающей среды от загрязнения пестицидами. Вопрос об использовании пестицидов рассматривался в России, США, Великобритании, Германии, Японии и других странах. Были сделаны выводы о невозможности отказа от их применения в ближайшее обозримое будущее. Намечены конкретные пути рационального применения пестицидов в сельском хозяйстве.

Забота об охране окружающей среды оказывает влияние на использование пестицидов для защиты растений. Bo многих странах введено строгое регламентирование их применения. Оно позволило в значительной степени предотвратить загрязнение окружающей среды, избежать накопления остатков пестицидов в сельскохозяйственной продукции и в почве, гибели полезных организмов, ущерба здоровью людей. За последнее время усилен контроль за пестицидами со стороны государств.

Химический метод совершенствуется с учетом требований охраны окружающей среды. Снижается токсичность пестицидов для теплокровных организмов, ограничивается использование хлорорганических и других препаратов, накапливающихся в окружающей среде. В сельскохозяйственное производство внедряются более совершенные способы применения пестицидов, в результате чего загрязнение окружающей среды пестицидами, и в первую очередь хлорорганическими препаратами, уменьшается.

Рациональное применение пестицидов связывается с разработкой и внедрением в производство комплексных систем мероприятий, или интегрированной борьбы, в которой химический метод сочетается с агротехническим, биологическим, механическим и др. При этом учитывается экологическая ситуация на защищаемых объектах, принимаются во внимание критерии численности вредных организмов и полезных видов.

Большое внимание уделяется предотвращению загрязнения почвы пестицидами.