Транспортная задача и задача об использовании сырья

Загрузить архив:
Файл: ref-26147.zip (118kb [zip], Скачиваний: 27) скачать
1

1. Решить задачу об использовании сырья геометрическим способом и симплекс методом, дать экономическую интерпретацию.

75

5

3

83

4

7

50

1

5

4

5

Геометрический способ.

Пусть  количество выпускаемой продукции первого вида, тогда  количество выпускаемой продукции второго вида. Прибыль от реализации всей продукции составляет

Цель задачи (максимализация прибыли) запишется в виде

Расход ресурса

Запас ресурса

Структура всех трёх ограничений одинакова                                    

 

Перейдём из неравенств к уравнениям

Построим прямые на плоскости

Многоугольник решений  построим начальную прямую  и вектор  вдоль вектора  получим, что максимальное значение наша прямая принимает в точке  точке пересечения прямых  и

Симплекс метод.

Приведём систему неравенств к системе уравнений

Целевая функция – функция прибыли

Составим симплекс таблицу:

   - Первое ограничение запишем в первую строку

   - Второе ограничение запишем во вторую строку

   - Третье ограничение запишем в третью строку

Целевую функцию запишем в  строку

Б

З

75

5

3

1

0

0

83

4

7

0

1

0

50

1

5

0

0

1

0

0

0

0

В строке  есть отрицательные  начальный план не оптимален. Найдём наименьший отрицательный элемент строки  будет включена в базис. Столбец переменной  – ведущий.  Подсчитаем симплексные отношения и найдём среди них минимальное  третья строка ведущая, а элемент  разрешающий. Следовательно переменная  выйдет из базиса.

Проведём одну интеракцию метода замещения Жордано-Гаусса. Столбцы. Разрешающий элемент

равен  поделим третью строку на 5, столбец  сделаем единичным для этого третью строку умножим на  и прибавим к первой строке, третью строку умножим на  и сложим со второй строкой; третью строку сложим со строкой

Б

З

45

0

1

0

13

0

0

1

10

1

0

0

50

0

0

0

1

В строке  есть отрицательные  план не оптимальный. Рассчитаем симплексные отношения и найдём среди них минимальное  вторая строка ведущая  разрешающий

Следовательно, переменная  выйдёт из базиса. Так как разрешающий элемент  на  отличны от элемента  сделаем нулевыми, для этого вторую строку умножим на  и прибавим к первой; вторую строку умножим на  и прибавим к третьей; вторую строку умножим на  и прибавим к строке

Б

З

23

0

0

1

5

1

0

0

9

0

1

0

65

0

0

0

В строке  есть отрицательный элемент – пересчитываем таблицу. Рассчитываем симплексные отношения и найдём среди них минимальные  первая строка ведущая  разрешающий элемент  переменная  выйдет из базиса. Сделаем элемент  единичным, для этого поделим первую строку на  сделаем единичным для этого первую строку умножим на  и прибавим ко второй строке. Первую строку умножим на  и прибавим к третьей. Первую строку умножим на  и прибавим к строке

Б

З

13

0

0

1

12

1

0

0

5

0

1

0

73

0

0

0

Так как в строке  все элементы неотрицательны, то найден оптимальный план

Оптимальный план найденный геометрическим способом и симплексным методом совпадают. Предприятию необходимо выпускать 12 единиц продукции первого вида и 5 единиц продукции второго вида. В этом случае предприятие получит прибыль  денежных единиц.

2. Решить транспортную задачу распределительным методом, оценивая свободные клетки по методу потенциалов.

     

   

60

50

85

75

65

8

10

6

5

65

80

4

30

3

50

5

9

35

11

25

4

4

8

10

90

5

5

5

3

85

6

Проверим необходимое и достаточное условие разрешимости задачи

Потребность в грузе равна запасам груза  задача закрытая, следовательно, имеет единственное решение.

Используя метод наименьшей стоимости заполним таблицу.

Среди тарифов наилучшим является  и

в клетку  

в клетку

в клетку

в клетку

в клетку

в клетку

в клетку

Запасы поставщиков исчерпаны, запросы потребителей удовлетворены полностью. В результате получили первый опорный план. Подсчитаем число занятых клеток таблицы их 7, а должно быть  опорный план не вырожденный.

Определим значение целевой функции первого опорного плана

Проверим оптимальность плана.

Найдём потенциалы  и  по занятым клеткам таблицы

Пусть

Подсчитаем оценки свободных клеток

Первый опорный план не является оптимальным так как

Переходим к его улучшению. Для клетки  строим цикл перераспределения

В результате получили новый опорный план

     

   

60

50

85

75

65

8

10

6

5

65

80

4

55

3

25

5

9

35

11

4

25

4

8

10

90

5

5

5

3

85

6

Определим значение целевой функции

Проверим оптимальность плана

                   

Подсчитаем оценки свободных клеток

План близок к оптимальному.

При дальнейшем перераспределении груза, задача входит в циклическую фазу, план не улучшается. Таким образом, полученное решение является наиболее оптимальным для нашей задачи