Загрузить архив: | |
Файл: vdv-0138.zip (10kb [zip], Скачиваний: 123) скачать |
Русская гимназия
КОНСПЕКТ
на тему:
Функция
Выполнил
ученик 10«Ф» класса Бурмистров Сергей
Руководитель
учитель Математики
Юлина О.А.
Нижний Новгород
1997 год
Функция и её свойства
Функция- зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.
Переменная х- независимая переменная или аргумент.
Переменная у- зависимая переменная
Значение функции- значение у, соответствующее заданному значению х.
Область определения функции- все значения, которые принимает независимая переменная.
Область значений функции (множество значений)- все значения, которые принимает функция.
Функция является четной- если для любого х из области определения функции выполняется равенство f(x)=f(-x)
Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x)
Возрастающая функция- если для
любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1)
Убывающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1)>f(х2)
Способы задания функции
¨Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у=f(x), где f(x)-íåêîòîðîå âыðàæåíèå с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.
¨На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов.
Виды функций и их свойства
1)Постоянная функция- функция, заданная формулой у=b, где b-некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат
2) Прямая пропорциональность- функция, заданная формулой у=kx, где к¹0. Число kназывается коэффициентом пропорциональности.
Cвойства функции y=kx:
1. Область определения функции- множество всех действительных чисел
2. y=kx - нечетная функция
3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой
3)Линейная функция- функция, которая задана формулой y=kx+b, где k и b-действительные числа. Если в частности, k=0, то получаем постоянную функцию y=b; если b=0, то получаем прямую пропорциональность y=kx.
Свойства функции y=kx+b:
1. Область определения- множество всех действительных чисел
2. Функция y=kx+bобщего вида, т.е. ни чётна, ни нечётна.
3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой
Графиком функции является прямая.
4)Обратная пропорциональность- функция, заданная формулой y=k/х, где k¹0 Число k называют коэффициентом обратной пропорциональности.
Свойства функции y=k/x:
1. Область определения- множество всех действительных чисел кроме нуля
2. y=k/x- нечетная функция
3. Если k>0, то функция убывает на промежутке (0;+¥) и на промежутке (-¥;0). Если k<0, то функция возрастает на промежутке (-¥;0) и на промежутке (0;+¥).
Графиком функции является гипербола.
5)Функция y=x2
Свойства функции y=x2:
1. Область определения- вся числовая прямая
2. y=x2- четная функция
3. На промежутке [0;+¥) функция возрастает
4. На промежутке (-¥;0] функция убывает
Графиком функции является парабола.
6)Функция y=x3
Свойства функции y=x3:
1. Область определения- вся числовая прямая
2. y=x3-нечетная функция
3. Функция возрастает на всей числовой прямой
Графиком функции является кубическая парабола
7)Степенная функция с натуральным показателем- функция, заданная формулой y=xn, где n- натуральное число. При n=1 получаем функцию y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x2; y=x3. Их свойства рассмотрены выше.
Пусть n- произвольное четное число, большее двух: 4,6,8... В этом случае функция y=xnобладает теми же свойствами, что и функция y=x2. График функции напоминает параболу y=x2, только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х|<1 тем «теснее прижимаются» к оси Х, чем больше n.
Пусть n- произвольное нечетное число, большее трех: 5,7,9... В этом случае функция y=xnобладает теми же свойствами, что и функция y=x3. График функции напоминает кубическую параболу.
8)Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x-n, где n- натуральное число. При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4.
Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функция y=x-n обладает в основном теми же свойствами, что и функция y=1/х.
Пусть n- четное число, например n=2.
Свойства функции y=x-2:
1. Функция определена при всех x¹0
2. y=x-2 - четная функция
3. Функция убывает на (0;+¥) и возрастает на (-¥;0).
Теми же свойствами обладают любые функции при четном n, большем двух.
9)Функция y=Öх
Свойства функции y=Öх:
1. Область определения - луч [0;+¥).
2. Функция y=Öх - общего вида
3. Функция возрастает на луче [0;+¥).
10)Функция y=3Öх
Свойства функции y=3Öх:
1. Область определения- вся числовая прямая
2. Функция y=3Öх нечетна.
3. Функция возрастает на всей числовой прямой.
11)Функция y=nÖх
При четном n функция обладает теми же свойствами, что и функция y=Öх. При нечетном n функция y=nÖх обладает теми же свойствами, что и функция y=3Öх.
12)Степенная функция с положительным дробным показателем- функция, заданная формулой y=xr, где r- положительная несократимая дробь.
Свойства функции y=xr:
1. Область определения- луч [0;+¥).
2. Функция общего вида
3. Функция возрастает на [0;+¥).
На рисунке изображен график функции y=x5/2. Он заключен между графиками функций y=x2 и y=x3, заданных на промежутке [0;+¥).Подобный вид имеет любой график функции вида y=xr, где r>1.
На рисунке изображен график функции y=x2/3.
Подобный вид имеет график любой степенной функции y=xr , где 0 13)Степенная функция с отрицательным дробным показателем-функция,
заданная формулой y=x-r, где r-
положительная несократимая дробь. Свойства функции y=x-r: 1. Обл. определения -промежуток (0;+¥) 2. Функция
общего вида 3. Функция
убывает на (0;+¥) 14)Обратная функция Если функция y=f(x) такова,
что для любого ее значения yo уравнение f(x)=yo имеет относительно х единственный корень, то говорят, что
функция fобратима. Если
функция y=f(x)
определена и возрастает (убывает) на промежутке Х и областью ее значений
является промежуток Y, то у
нее существует обратная функция, причем обратная функция определена и
возрастает(убывает) на Y. Таким образом, чтобы
построить график функции, обратной к функции y=f(x), надо график функции y=f(x) подвергнуть преобразованию симметрии относительно
прямой y=x. 15)Сложная функция-
функция, аргументом которой является другая любая функция. Возьмем, к примеру,
функцию y=x+4. Подставим
в аргумент функцию y=x+2.
Получается: y(x+2)=x+2+4=x+6. Это и
будет являться сложной функцией.