Оценка загрязнения атмосферного воздуха создаваемого деятельностью локомотивного депо станции Перерва

Сдавался/использовалсяАпрель/2008г., Москва, РГОУ
Примечаниеот редактора: автор не назвал себя; отсутствует текст заключения по работе
Загрузить архив:
Файл: ref-27565.zip (1475kb [zip], Скачиваний: 184) скачать

СОДЕРЖАНИЕ ДИПЛОМНОЙ РАБОТЫ

ВВЕДЕНИЕ

3

1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ОЦЕНКИ ВЫБРОСОВ В АТМОСФЕРУ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ,СОЗДАВАЕМЫХ ЛОКОМОТИВНЫМ ДЕПО

6

1.1 Охрана атмосферного воздуха при обострении кризисных ситуаций в эколого-экономической системе

6

1.2 Локомотивное хозяйство, типы локомотивного депо          

13

1.3 Система мероприятий по улучшению экологической обстановки на предприятиях

17

2. АНАЛИЗ И ОЦЕНКА ЗАГРЯЗНЕНИЙ АТМОСФЕРНОГО ВОЗДУХА, СОЗДАВАЕМОГО ДЕЯТЕЛЬНОСТЬЮ ЛОКОМОТИВНОГО ДЕПО СТАНЦИИ ПЕРЕРВА

18

2.1 Исходные данные для расчета вредных выбросов в локомотивном депо станции Перерва  

18

2.2 Расчет вредных выбросов в атмосферу, осуществляемых локомотивным депо 

21

2.2.1 Расчет вредных выбросов при кузнечных работах

22

2.2.2Расчет вредных выбросов при механической обработке металлов

28

2.2.3 Расчет вредных выбросов при газовой резке металлов

31

2.2.4 Расчет вредных выбросов при сварочных работах

35

2.2.5 Расчет вредных выбросов при нанесении лакокрасочных материалов

63

2.2.6 Суммарные выбросы загрязняющих веществ в атмосферу источниками локомотивного депо

72

3. ПРОЕКТ МЕРОПРИЯТИЙ ПО УЛУЧШЕНИЮ ЭКОЛОГИЧЕСКОЙ ОБСТАНОВКИ В ЛОКОМОТИВНОМ ДЕПО ПЕРЕРВА

75

3.1 Инженерное решение для снижения загрязнения атмосферы и совершенства технологического процесса

75

4.ОЦЕНКА УЩЕРБА ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЕ ОТ ПРОИЗВОДСТВЕННОЙ ДЕЯТЕЛЬНОСТИ

79

4.1 Природоохранные мероприятия и их эффективность

79

4.2 Экономическая эффективность мероприятий

80

ЗАКЛЮЧЕНИЕ

84

ПРИЛОЖЕНИЕ 1

ПРИЛОЖЕНИЕ 2

СПИСОК ЛИТЕРАТУРЫ

87

ВВЕДЕНИЕ

Взаимосвязь экономики и экологии должна опираться на результаты комплексного анализа всей совокупности показателей научно-технического прогресса во всех отраслях рыночной экономики. Комплексный анализ необходим, чтобы четко определить реальные затраты на создание системы рационального природопользования и природоохранную деятельность в условиях рынка. Целью ресурсосберегающих и природоохранных мероприятий является повышение жизненного уровня людей, создание максимальной комфортности среды их обитания с учетом потенциальных возможностей страны, мировых достижений в области науки и техники, форм территориальной организации производств, уровня социальной производственной и рыночной инфраструктур.

Высокий уровень загрязнения окружающей среды стал угрозой для населения промышленных районов, сельскохозяйственных культур и лесного хозяйства. Очень сильно сказывается на комфортности жизни людей загрязнение атмосферного воздуха. Поэтому требуется последовательно выполнять операционные и хозяйственные меры по предупреждению загрязнения и развитию оперативного контроля за состоянием атмосферного воздуха.

В рамках мониторинга атмосферного воздуха создана система оценок выбросов промышленных предприятий конкретной сферы, загрязняющих атмосферный воздух отходами своей жизнедеятельности. Среди этих предприятий, отравляющих природную среду, значительный вред атмосфере приносят предприятия железнодорожного транспорта, в том числе локомотивные депо. Поэтому комплексная оценка загрязнений атмосферного воздуха, создаваемая деятельностью локомотивного депо, в рамках мониторинга окружающей среды всегда актуальна по следующим причинам.

1) С экологической точки зрения эта оценка позволяет сравнить предельно допустимую концентрацию и фактическое содержание вредных веществ в атмосфере, с целью разработки мероприятий по снижению выбросов загрязняющих веществ в районе расположения локомотивного депо.

2) С экономической точки зрения оптимизация выбросов позволяет снизить издержки предприятия – локомотивного депо, связанного с выплатой штрафных санкций за превышения предельно допустимой концентрации фактических выбросов в атмосферу.

3) С технологической точки зрения: улучшить технологический процесс деятельности подразделений, входящих в локомотивное депо, тем самым оптимизировать персонал, осуществить экономию затрат на предприятии.

4) С технической точки зрения: перейти на инновационное, более совершенное оборудование, ресурсосберегающее и более экологически чистое.

Исходя из актуальности темы, сформулируем цели и задачи исследования дипломного проекта.

Цель: оценить загрязнение атмосферы, создаваемой деятельностью локомотивного депо станции Перерва для перехода на эффективную эколого-экономическую систему на данном предприятии.

Для реализации поставленной цели решаются следующие задачи:

1. Дать теоретические основы оценки выбросов в атмосферу загрязняющих веществ, создаваемых локомотивным депо.

2. Проанализировать и дать оценку загрязнений атмосферного воздуха, создаваемого деятельностью локомотивного депо станции Перерва Московской ж/д.

3. Разработать проект мероприятий по улучшению экологической обстановки в локомотивном депо станции Перерва и рассчитать эффективность предложенных мероприятий.

Методология исследования: в качестве теоретических основ в работе используются труды по экономике и организации природопользования таких авторов, как Н.Н.Лукьянчиков, И.М.Потравный, П.М.Нестеров, А.П.Нестеров; по охране окружающей среды и экологической безопасности на железнодорожном транспорте - труды Н.И.Зубрева, В.М.Медведева, Н.А.Шарпова, а также СНИПы, методические пособия по расчету выбросов, нормативные правовые акты Российской Федерации в области природопользования, охраны окружающей среды и экологических прав человека.

1. Теоретические основы оценки выбросов в атмосферу загрязняющих веществ, создаваемых локомотивным депо

1.1. Охрана атмосферного воздуха при обострении кризисных ситуаций в эколого-экономической системе

Двадцатый век принес человечеству немало благ, связанных с бур­ным развитием научно-технического прогресса, и в то же время поставил жизнь на Земле на грань экологической катастрофы. Рост населения, интенсификация добычи полезных ископаемых и выбросов веществ, загряз­няющих Землю, приводят к коренным изменениям в природе и отражаются на самом существовании человека. Часть из таких изменений чрезвычайно сильна и настолько широко распро­странена, что возникают глобальные экологические проблемы. Имеются серьезные проблемы загрязнения (атмосферы, вод, почв), кислотных дождей, радиационного поражения террито­рии, а также утраты отдельных видов растений и живых орга­низмов, оскудения биоресурсов, обезлесения и опустынивания территорий.

Перечисленные проблемы характерны и для России, зани­мающей 1/8 часть земной суши.

Масштабы воздействия на окружающую среду достигли та­ких размеров, что под угрозу поставлена сама жизнь на планете. Особенно опасны антропогенное загрязнение атмосферного воз­духа и его экологические последствия для природных экосистем. Это воздействует и непосредственно на состояние атмосферы (нагревание, изменение влажности) и на физико-химические свойства (изменение состава, увеличение содержа­ния диоксида углерода и различных примесей: метана, озона, фреона, аэрозолей и др.).

Значительно загрязняют атмосферу автомобильный транс­порт, ТЭЦ, предприятия черной и цветной металлургии, нефтегазоперерабатывающей, химической и лесной промышленности. Большое количество вредных веществ в атмосферу поступает с выхлопными газами автомобилей, причем их доля в загрязнении воздуха постоянно растет; в России – более 30%, а в США – более 60% от общего выброса загрязняющих веществ в атмосфе­ру. Подсчитано, что лишь один автомобиль за год выбрасывает в атмосферу 660-800 кг оксида углерода, около 200 кг несгоревших углеводородов и около 40 кг оксидов азота. В настоящее же время в мире насчитывается более 400 млн автомобилей.

Основные источники загрязнения атмосферного воздуха ре­гионов нашей страны – машины и установки, использующие серосодержащие угли, нефть, газ. Больше половины добываемых в европейской части страны углей содержат свыше 2,5% серы. Поэтому ежегодно в атмосферу в результате промышленной дея­тельности человека попадает примерно 75*106 т окиси серы, 53*106 т окиси и двуокиси азота, 304*106 т окиси углерода, 88*106 т углеводородов (предельных, альдегидных и пр.).

Хозяйственная деятельность людей при­вела к значительному накоплению в атмосфере некоторых хи­мических соединений, что имеет далеко идущие последствия для жизни и окружающей среды. Наиболее очевидный пример – "кислотные дожди", представляющие собой осадки, окислив­шиеся в результате загрязнения атмосферы.

Причиняемый кислотными дождями природной среде ущерб убеждает в настоятельной необходимости борьбы с причинами, его вызывающими. Технические достижения наших дней дают возможность найти как экологически, так и экономически при­емлемые решения этой проблемы.

Диффузия и другие процессы в атмосфере способствуют тому, что кисло­та в газообразном виде или в виде взвешенных частиц достигает земной поверхности и в сухую погоду. Многие специалисты по изучению окружающей среды убеждены, что сухие осадки приводят к таким же разрушительным последствиям, как ядовитый дождь или снег. Они предполагают, что более точное определе­ние "кислотного дождя" должно включать и мокрые, и сухие выпадения.

Известно, аэрозольные частицы уменьшают видимость и разрушают различные материалы. Существуют оригинальные методы анализа, позволяющие установить, что основным источ­ником этих частиц является сжигание топлива. В результате сжигания топлива выделяется много веществ, включая частицы углерода (если сгорание происходит не полностью), диоксид се­ры, или сернистый газ. Кроме того, высокая температура горе­ния способствует реакции атмосферного азота с кислородом, что приводит к образованию газообразных оксидов азота. Когда эти газы в атмосфере контактируют с водой, они образуют мельчай­шие капли серной кислоты или газообразную азотную кислоту. Обе эти кислоты легко растворяются в воде, выпадающей в виде дождя. Если атмосфера относительно сухая, азотная кислота ос­тается в основном в газообразном состоянии, а серная образует мельчайшие частицы, которые иногда попадают на землю с до­ждем.

Кислотный дождь может выпадать за сотни километров от источника загрязнения. И где бы это ни происходило, выпавшие осадки наносят огромный вред хозяйству. Они могут приводить к изменению кислотности и химических характеристик воды, почвы.

Реконструкция старых электростанций позволила бы в мак­симальной степени уменьшить выброс в атмосферу всех загряз­няющих веществ, вызывающих кислотные дожди. Она привела бы к снижению выбросов диоксида серы более чем на 80% и оксидов азота более чем на 50%.

На протяжении последнего десятилетия происходит утончение слоя озона над Землей, что может привести к серьезным послед­ствиям для человечества. Содержание озона в атмосфере не дос­тигает и одной миллионной доли от содержания остальных газов, однако именно озон поглощает большую часть солнечной ультра­фиолетовой радиации, не давая ей достигнуть земной поверхно­сти. Ультрафиолет обладает достаточной энергией, чтобы разру­шать многие органические молекулы, включая ДНК. Он может вызвать рак кожи, катаракту и иммунную недостаточность, а так­же повреждать посевы и морские экосистемы.

Значительный вред озонному слою приносит соединение, известное под названием хлорфторуглерод. Хлорфторуглеродная проблема стала одной из основных в исследованиях по загрязнению атмосферы. Эти газы служат хладагентами в холодильни­ках и кондиционерах, распылителями для аэрозольных смесей, пенообразующими агентами и очистителями для электронных приборов. Когда-то они рассматривались как идеальные для практического применения химические вещества, поскольку они очень стабильны и неактивны, а значит, нетоксичны. Как это ни парадоксально, но именно инертность этих соединений дела­ет их "врагами" стратосферного озона.

Исследования показали, что хлор быстро разрушает озон. В атмосферу выбрасываются миллионы тонн хлорфторуглерода. Если этот процесс будет продолжаться, то приведет к накопле­нию хлорфторуглерода в стратосфере в концентрации, доста­точной для серьезных повреждений озонного слоя.

Выброс вредных веществ от стационарных источников в атмо­сферу в среднем по стране доставляет 226 кг на человека в год. Большое количество выбросов в Новокуйбышевске 2456 кг, Ачинске – 1730, Липецке – 1530, Новокузнецке – 1500 кг.

Экономические районы страны весьма значительно различа­ются по степени загрязнения воздушного бассейна. Наибольшее загрязнение атмосферы испытывают жители Уральского и Вос­точно - Сибирского экономических районов. Уральский эконо­мический район занимает первое место в стране по выбросам твердых веществ, окислов азота, серной кислоты и свинца. Зна­чительно загрязнены Свердловская и Челябинская области. Восточно - Сибирский экономический район особо выделяется по выбросам окислов серы, фтористых соединений, хлора. Наибо­лее сильное воздействие испытывают Норильск, Красноярск, Иркутско - Черемховский промышленный район и Братский промышленный узел. Поволжский экономический район зани­мает первое место в стране по выбросам сероуглерода, так как здесь находятся центры нефтяной и нефтеперерабатывающей промышленности – Астрахань, Волгоград, Новокуйбышевск, Нижнекамск, Тольятти, Саратов, Казань. В Центральном экономическом районе основными источниками вредных выбросов в атмосферу являются три крупные электростанции, многочис­ленные химические предприятия в Москве, Кольчугино, Рязани, что при относительно небольшой площади района обусловлива­ет высокую плотность выбросов в атмосферу.

На многих предприятиях химической промышленности, чер­ной и цветной металлургии, энергетики затраты на сооружения по очистке воздуха составляют 20-30%, а на некоторых дости­гают 40% от стоимости основных производственных фондов, загрязнение воздуха обходится еще дороже.

Если рассматривать экономическую эффективность атмосфероохранных мероприятий с народнохозяйственной точки зре­ния, то, с одной стороны, потребуется увеличение капитальных и эксплуатационных затрат, а с другой – произойдет прирост чистого дохода и снижение ущерба. Причем этот ущерб может быть снижен и в других отраслях.

Исключение ущерба необходимо рассматривать как возмож­ные резервы повышения эффективности производства и рацио­нальное природопользование. Осуществление принципа опти­мальности в народном хозяйстве становится необходимостью современной экономики страны. Однако в силу недостаточности наших знаний не всегда можно выбрать оптимальный вариант.

Весьма важно определить направления оздоровления воздушного бассейна.

В нашей стране из-за ухудшения состояния атмосферного воздуха в городах и промышленных центрах снижается ком­фортность жизни людей, что требует последовательного выпол­нения организационных и хозяйственных мер по предупрежде­нию загрязнения и развитию оперативного контроля за состоя­нием атмосферного воздуха.

Основные эколого-экономические показатели охраны атмо­сферного воздуха следующие:

По стационарным источникам:

IV. Общее количество вредных веществ, отходящих от всех источни­ков загрязнения в год, тыс. т; в том числе твердых; жидких и газооб­разных (всего и по видам).

II. Количество вредных веществ, выбрасываемых в атмосферу в год, тыс. т; в том числе твердых, жидких и газообразных; снижение или увеличение выброса вредных веществ в атмосферу по сравнению с пре­дыдущим периодом.

III. Общее количество улавливаемых и обезвреженных вредных ве­ществ в год, тыс. т; в том числе твердых, жидких и газообразных.

IV. Из общего количества улавливаемых и обезвреженных веществ утилизируются в год, тыс. т.

При разработке мер по охране атмосферного воздуха пресле­дуется цель максимально сократить и полностью исключить вредные выбросы в воздушный бассейн для обеспечения хоро­шего качества воздушного пространства.

Из результатов проводимых исследований относительно чис­тым считается такой воздух, в котором концентрация вредных примесей не превышает предельно допустимую концентрацию (ПДК). Этот показатель принимается как норматив качества воздуха. Минздрав РФ утвердил ПДК для человека более чем на 600 токсинов, которые довольно полно характеризуют экологическую ситуацию.

На предприятиях промышленности и в непроизводственной сфере при анализе эколого-экономических показателей, харак­теризующих плановое и фактическое содержание вредных ве­ществ в атмосфере, ориентируются на то, чтобы выполнялось соотношение

                                                                                 (1)

где С       – концентрация вредных веществ в приземном слое воздуха;

ПДК – предельно-допустимые концентрации.

Повышение эффективности природоохранных мероприятий в области защиты воздушного бассейна от загрязнения токсиче­скими веществами тесно связано с объемом производимой про­дукции, техническим и технологическим уровнем производства в промышленности и сельском хозяйстве. Это обстоятельство определяет необходимость осуществлять природоохранную дея­тельность на предприятиях, в регионах и областях по двум ос­новным направлениям: создавать малоотходные и безотходные производства или развивать промышленную подготовку сырья к использованию или санитарную очистку отходящих газов от твердых, газообразных и туманообразных агрессивных примесей. Сложившийся технический и технологический уровень произ­водства продукции требует усиления природоохранной деятель­ности.


1.2. Локомотивное хозяйство, типы локомотивного депо

Локомотивное хозяйство предназначено для ремонта, техни­ческого обслуживания и экипировки поездных и маневровых ло­комотивов, а также мотор-вагонного подвижного состава.

К сооружениям и устройствам локомотивного хозяйства отно­сятся основные ремонтные депо; пункты оборота локомотивов; пункты смены локомотивных бригад; пункты технического об­служивания локомотивов; экипировочные устройства (при депо, в пунктах оборота и технического обслуживания локомотивов, а в некоторых случаях на приемоотправочных путях станций); пути для прохода и стоянки локомотивов; устройства для поворота ло­комотивов (в необходимых случаях); устройства энерго-, водо- и теплоснабжения, связи, служебно-технические здания.

На территории локомотивного хозяйства также размещают­ся пути стоянки запаса локомотивов (в период уменьшения раз­меров движения), пути пожарного и восстановительного поез­дов, котельная, электростанция или трансформаторная подстан­ция.

По роду своей деятельности депо подразделяются на эксплуа­тационные и эксплуатационно-ремонтные. В эксплуатационном депо с приписным парком магистральных локомотивов выполня­ют внеплановые ремонты по устранению отказов локомотивов, текущий ремонт локомотивов ТР-1, техническое обслуживание ТО-2, ТО-3 и ТО-4 (обточку колесных пар) и экипировку: ос­мотр, очистку, снабжение топливом, смазочными материалами, песком, обтирочными материалами, охлаждающей водой.

В эксплуатационно-ремонтном депо с приписанным к ним пар­ком локомотивов дополнительно к тем видам ТО и ТР, которые выполняются в эксплуатационном депо, осуществляется текущий ремонт ТР-2 и ТР-3 как для нужд самого депо, так и для других предприятий.

На станциях с пунктом оборота осуществляют техническое обслуживание ТО-2 и экипировку локомотивов. Для этой цели локомотивное хозяйство имеет устройства для технического обслуживания, экипировки и стоянки локомотивов в ожидании подачи их к поездам.

Размещение в пределах дороги депо, пунктов оборота, экипи­ровки и технического обслуживания локомотивов и пунктов сме­ны бригад устанавливали» на основе технико-экономического сравнения схем тягового обслуживания.

При этом пробег приписанных к депо локомотивов не должен превышать при электрической тяге 35 млн локомотиво-км, а при тепловозной – 25 млн локомотиво-км в год.

Потребное число стойл депо (рис. 1.1) для каждого вида ре­монта и технического обслуживания ТО-3 локомотивов можно определить по формуле

                                                                                 (2)

          где Sгод – годовой пробег локомотивов, млн локомотиво-км;

          – потребность в стойлах для данного вида ремонта на 1 млн локомо­тиво-км в год.

Годовой пробег локомотивов

                        (3)

где l    – длина участка обращения локомотивов, км;

N– число пар поездов, обращающихся на соответствующих участках в сред­ние сутки максимального месяца;

           kнер – коэффициент внутригодовой неравномерности движения.

Потребность в стойлах депо для ремонта и технического обслу­живания ТО-3 локомотивов на 1 млн локомотиво-км пробега при­ведена в табл. 1.1.

Рис. 1.1. Локомотивное депо

1 – мастерские; 2 – цех текущего ремонта ТР-2;

3 – цех текущего ремонта ТР-1; 4 – административно-бытовой корпус

Таблица 1.1

Тип депо

Число стойл по видам ремонта на 1 млн локомотиво-км в год

Всего стойл (без ТР-3)

ТР-3

ТР-2

ТР-1

ТО-3

Электровозное

0,02

0,03

0,20

0,04

0,27

Тепловозное

0,05

0,03

0,05

0,20

0,28

По полученному расчетом числу стойл устанавливают число секций депо, каждая из которых имеет три тупиковых или сквоз­ных пути (на сквозном пути размещаются два ремонтных стойла).

В комплекс экипировочных устройств входят служебно-техническое здание, экипировочные позиции со смотровыми канава­ми, устройства пескоснабжения (пескосушильная установка со складом сухого и сырого песка), склады масел и дизельного топ­лива (для тепловозов).

Число позиций для экипировки, технического обслуживания локомотивов, смены локомотивных бригад и подготовки локомо­тивов к поездке определяется по формуле

                        (4)

где Nэк, NTO– число локомотивов, подлежащих соответственно экипировке и техническому обслуживанию в течение суток;

tэк – время на экипировку одного локомотива с подготовкой его к по­ездке (для тепловозов 30 мин, для электровозов 25 мин);

tТО – продолжительность технического обслуживания, совмещенного по времени с экипировкой (для грузовых локомотивов 60 мин);

– коэффициент, учитывающий неравномерность поступления ло­комотивов, равный 1,1 – 1,3.

Полезная длина каждого из экипировочных путей устанавли­вается из условия стоянки не менее трех локомотивов: один – на смотровой канаве, другой – перед ней, третий – за канавой. Емкость путей готовых локомотивов принимается из условия нахождения 10... 12% локомотивов от числа прибывающих за сутки.


1.3. Система мероприятий по улучшению экологической обстановки на предприятиях

Все направления защиты воздушного бассейна можно объединить в 4 большие группы:

– санитарно-технические: сооружение сверхвысоких дымовых труб, установка газопылевого оборудования, герметизация технологического и транспортного оборудования;

– технологические: создание новых технологий, основанных на частично и полностью замкнутых циклах, новых методов подготовки сырья, очищающих его от примесей до вовлечения в производство, замена исходного сырья, замена сухих способов переработки пылящих материалов мокрыми, автоматизация производственных процессов;

– планировочные: создание санитарно-защитных зон вокруг промышленных предприятий, оптимальное расположение промышленных предприятий с учетом розы ветров, вынос наиболее токсичных производств за черту города; рациональная планировка городской застройки, озеленение городов;

– контрольно-запретительные: установление ПДК загрязнителей, ПДВ, запрещение производства отдельных токсичных продуктов, автоматизация контроля за выбросами.

2. Анализ и оценка загрязнений атмосферного воздуха, создаваемого деятельностью локомотивного депо станции Перерва Московской ж/д

2.1. Исходные данные для расчета вредных выбросов в локомотивном депо станции Перерва

В качестве предприятия для анализа и оценки загрязнения атмосферного воздуха рассматривается локомотивное депо станции Перерва Московской железной дороги, впредь именуемое Локомотивное депо или предприятие. Локомотивное депо проводит ремонт, техническое обслуживание электропоездов постоянного тока. На рис. 2.1. приводится карта-схема предприятия и его района расположения. Цифрами на рис. 2.1 обозначены объекты, расположенные в нормативной санитарно-защитной зоне (НС33) предприятия.

Предприятие работает 250 дней в году. Режим работы односменный. В составе предприятия при существующем положении входят следующие производственные цеха и участки, загрязняющие атмосферный воздух:

· механический цех, где производят ремонт и изготовление деталей с помощью металлообрабатывающих станков;

· кузнечное отделение, в составе механического цеха;

· сварочный цех, с постами (отделениями), где осуществляется электродуговая сварка штучными электродами и газовая резка металлов;

· лакокрасочное отделение, где осуществляется покраска тепловозов после ремонта;

На предприятии имеется маневровый тепловоз.

Рис. 2.1. Карта-схема района расположения локомотивного депо

В табл. 2.1. представлены графические и метеорологические характеристики размещения предприятия.


Таблица 2.1-Географические и метеорологические характеристики размещения предприятия

Направление

Зоны расположения

Север

1

Парк отдыха

Юг

4

Пустырь

Запад

6

Железнодорожные пути

Восток

8

Автомагистраль

Северо-Запад

7

Промышленное предприятие

Юго-Запад

5

Промышленное предприятие

Северо-Восток

2

Селитебная зона

Юго-Восток

3

Селитебная зона

Повторяемость направления ветра и штилей, %

С

17

СВ

3

В

4

ЮВ

7

Ю

15

ЮЗ

9

З

23

СЗ

18

Штиль

4

Тв, оС

25

Город

Москва


2.2. Расчет вредных выбросов в атмосферу, осуществляемых локомотивным депо

Предприятия железнодорожного транспорта в зависимости от состава входящих в них подразделений осуществляют вредные выбросы в атмосферу большей или меньшей интенсивности. Выбросы вредных веществ предприятия Локомотивное депо можно систематизировать следующим образом:

а) выбросы твердых частиц в кузнечных работах (при горении углей);

б) выбросы в атмосферу при ремонтных работах;

в) выбросы в атмосферу при сварке и газовой резке металлов;

г) выбросы при нанесении лакокрасочных материалов и др.

Учитываем, что большинство локомотивных депо в Российской Федерации разработаны по схожим типовым проектам, в отношении организации технологических процессов и технической оснащенности. При выполнении технологических процессов происходит загрязнение окружающей среды твердыми частицами и вредными газами. При этом, в расчетных формулах по оценке вредных выбросов в атмосферу должны учитываться географические и метеорологические характеристики исследуемого предприятия.

Наиболее значительные выбросы в локомотивном депо осуществляют котельные. Одна котельная на предприятии Локомотивное депо в процессе реконструкции была закрыта. Электро-энергетическое питание осуществляется от трансформаторной подстанции (Т.П.).

Далее представлены расчеты вредных выбросов при кузнечных работах механического цеха.


2.2.1 Расчет вредных выбросов при кузнечных работах

Вредные выбросы:

а) твердые частицы;

б) оксиды углерода;

в) оксиды азота;

г) диоксид серы;

д) диоксид азота.

Исходные данные представлены в табл. 2.2.

Исходные данные по источникам выброса

при кузнечных работах (горн) – источник 0001

Таблица 2.2

Показатель

Значения показателей

Источник выброса, Н, м

14,0

Источник выброса, D, м

0,4

Топливо

Уголь Печорского бассейна

Расход топлива горна в год, m, т/г

14,500

Время работы горна в день, t, час

10

Количество работы горна в год, n, день

360

qт – зольность топлива, %    

31

Эффективность золоуловителей, %, ηз

0

Коэффициент, учитывающий долю потери теплоты от химической неполноты сгорания топлива, R, %

1

Низшая теплота сгорания, Qчi,МДж/кг

17,54

Потери тепла от механической неполноты сгорания топлива, q1, %

7

Потери тепла вследствие химической неполноты сгорания топлива, q2, %

2

Количество азотов оксидов, выделяющегося при сжигании топлива, g3, кг/т

2,17

Содержание серы в топливе на рабочую массу, Sr, %

3,2

Доля диоксидов серы, связываемых летучей золой в котле, ηSO2, %

0,1

Доля оксидов серы, улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц, при отсутствии золоуловителей принимается равной нулю, η˝SO2, %

0 (золоуловитель отсутствует)

Продолжение таблицы 2.2

Твердые вешества

Валовый выброс определяется по формуле:

Mт = qт*m*c*(1- ηз/100), т/г                         (4)

   где qт – зольность топлива, %

   m – расход топлива за год, т/г

c – безразмерный коэффициент, с = 0,0023

     ηз – эффективность золоуловителей, %

Mт = 31*14,5* 0,0023*(1- 0/100) = 1,033826 т/г

Максимально разовый выброс определяется по формуле:

Gт = Мт*106/(t *n*3600), г/с            (5)

гдеn – количество дней работы горна в год;

     t – время работы горна в день, в час

Gт = 1,033826*106/(10 *360*3600) = 0,079771 г/с

Оксиды углерода

Валовый выброс определяется по формуле:

Мсо = Ссо *m *(1-q1/100)* 10-3, т/г      (6)

   где m – расход топлива за год, т/г

   q1– потери теплоты вследствие механической

          неполноты сгорания топлива,%

   Ссо – выход оксида углерода при сжигании топлива, кг/т

    Ссо = q2 * R * Qчi, кг/т                    (7)

где q1 – потери теплоты вследствие химической неполноты

    сгорания топлива, %

   R – коэффициент, учитывающий долю потери теплоты

    от химической неполноты сгорания топлива, %

Qчi – низшая теплота сгорания натурального топлива, МДж/кг

Ссо = 2 *1 * 17,54 = 35,08 кг/т.

Мсо = 35,08 *14,5 *(1-7/100)* 10-3 = 0,473054 т/г.

Максимально разовый выброс определяется по формуле:

                          Gco = Mco*106/(t*n*3600), г/с                     (8)

Gco = 0,4731*106/(10*360*3600) = 0,036501 г/с

Оксиды азота

Валовый выброс определяется по формуле:

                     MNO2 = g3 * m* 10-3, т/г                            (9)

гдеg3 – количество азотов оксидов, выделяющегося при сжигании

       топлива, кг/т

   m – расход топлива за год, т/г

MNO2 = 2,17 * 14,5 * 10-3 = 0,031465 т/г

Максимально разовый выброс определяется по формуле:

        GNO2 = MNO2 * 106/(t * n * 3600), г/с                   (10)

GNO2 = 0,0315 * 106/(10 * 360 * 3600) = 0,002428 г/с

С учетом трансформации этих оксидов в атмосферном воздухе, суммарные оксидов азота разделяются на составляющие (с учетом различия в молекулярной массе этих веществ).

                         MNO2 = 0,8* MNOх , т/г                             (11)

                            MNO2раз = 0,8* MNOх , г/с                  (12)

MNO2 = 0,8* 0,0315 = 0,025172 т/г

MNO2раз = 0,8* 0,0024= 0,001942 г/с

                        MNO2 = 0,13 * MNOх , т/г                                   (13)

                        MNO2раз = 0,13 * MNOх , г/с                    (14)

MNO2 = 0,13* 0,0315 = 0,004090 т/г

MNO2раз = 0,13* 0,0024 = 0,000316 г/с

Диоксид серы

Валовый выброс определяется по формуле:

MSO2 = 0.02*m*Sr * (1 – ηso2)* (1 – η˝so2), т/г               (15)

где Sr – содержание серы в топливе, %

   ηso2 – доля диоксида серы, связанного летучей золой топлива

   η˝so2 – доля диоксида серы, улавливаемого в золоуловителе

MSO2 = 0.02*14,5*3,2 * (1 – 0,1)* (1 – 0) = 0,835200 т/г

Максимально разовый выброс определяется по формуле:

                          GSO2 = MSO2 * 106/(t * n * 3600), г/с                        (16)                                 

GNO2 = 0.8352 * 106/(10 * 360 * 3600) = 0.064444 г/с

Итоговый результат выброса вредных веществ при кузнечных работах дан в табл. 2.3.

Таблица 2.3- Итоговый результат выбросов вредных веществ

в локомотивном депо (кузнечные работы) – источник 0001

Код вещества

Вредное вещество

Валовый выброс,

т/г

Максимально разовый выброс, г/с

301

Диоксид азота

0,025172

0,001942

304

Оксид азота

0,004090

0,000316

330

Диоксид серы

0,835200

0,064444

337

Оксид углерода

0,473054

0,036501

3714

Зола углей

1,033826

0,079771


2.2.2Расчет вредных выбросов при механической обработке металлов

Вредные выбросы:

а) пыль абразивная;

   б) пыль металлическая.

Исходные данные по механическому цеху представлены в табл. 2.4.

Исходные данные о вредных выбросах по механическому

цеху – источник 0002

Таблица 2.4

Показатель

Значение показателя

Источник выброса: заточный станок

Технологическая операция: механическая обработка металлов

Количество станков данного типа

1,0

Количество дней работыстанка в год, n

240

Количество часов работы станка в день,t

3,0

Диаметр шлифовального круга, мм

350

Количество одновременно работающих станков, S

1,0

Средства газоочистки

Пылеулавливающий агрегат АТФ – 1200

Количество дней исправной работы очистного устройства в год, n1

240

Степень очистки (в долях), пыль абразивная / пыль металлическая, ji

0,85 / 0,85

Удельное выделение: пыль абразивная / пыль металлическая , gi, т/г, г/с

0,016/0,024

Расчетные формулы:

Mi = 3,6*gi *S* t * n* (1- ji* n1/n), т/г                         (17)

Gi = gi * S*(1- ji* n1/n), г/с                                            (18)

где Mi– валовый выброс вредного вещества, т/г;

Gi – максимально разовый выброс вредного вещества, г/с;

gi – удельное выделение вредного вещества, г/с ;

t – время работы станка в день, час ;

n – количество дней работы одного станка в год ;

S – количество работающих единиц оборудования;

ji – степень очистки воздуха очистным устройством от i – ого вредного   вещества (в долях единицы);

n1– количество дней исправной  работы очистного устройства в год;

Вещество: пыль абразивная

Удельное выделение gi = 0,01600

Mпа = 3,6*0,016*1*3*240*(1 – 0,85) / 1000 = 0,0062208 т/г

Gпа = 0,016*1* (1 – 0,85) = 0,0024 г/с

Вещество: пыль металлическая

Удельное выделение gi = 0,02400

Mпм = 3,6*0,024*1*3*240*(1 – 0,85) / 1000 = 0,0093312 т/г

Gпм = 0,024*1* (1 – 0,85) = 0,0036 г/с

В табл. 2.5. представлены результаты вредных выбросов по механическому цеху.

Таблица 2.5- Итоговые данные вредных выбросов в механическом цехе (станок заточной) – источник № 0002

Вредное вещество

Код вещества

Валовый выброс

(т/г)

Максимально разовый выброс (г/с)

Пыль абразивная

Пыль металлическая

2930

0123

0,0062208

0,0093312

0,0024000

0,0036000


2.2.3 Расчет вредных выбросов при газовой резке металлов

Вредные выбросы:

а) диоксид азота;

б) оксид железа;

в) марганец и его соединения;

г) оксид углерода.

Исходные данные по вредным выбросам при газовой резке металла представлены в табл. 2.6.

Таблица 2.6-Исходные данные о вредных выбросах при газовой резке металла – источник № 0005

Показатель

Значение показателя

Источник выброса – газовая резка металла

Технологическая операция: газовая резка углеродистой стали толщиной 10 мм

Общее время резки, Т1, ч/г

750,00

Максимальное непрерывное время процесса, t, сек

600,00

Количество одновременно работающих единиц оборудования, К2

1,0

Средства газоочистки

отсутствуют

Удельное выделение:

Оксид углерода

Азота диоксид

Марганец и его соединения

Железа оксид, Кi, г/ч

63,400

64,100

1,900

129,100

Расчетные формулы:

Mi = Кi*Т1* (n1 - n i) * 10-6, т/г                                                       (19)

Gi = Кi*К2* (n1 - ni) / 3600, г/с                                                     (20)

        где Mi– валовый выброс вредного вещества, т/г;

          Gi – максимально разовый выброс вредного вещества, г/с;

          Кi – удельное выделение вредного вещества, г/ч;

          Т1 –  общее время резки в год, ч/г;

          t – максимальное непрерывное время процесса, сек

          n – количество дней работы одного станка в год;

          К2 –количество одновременно работающих единиц оборудования;

   ni –степень очистки воздуха очистным устройством от i-ого   вредного вещества;

 

Примечание: В том случае, если продолжительность непрерывногопроцесса сварки (резки, наплавки) составляет менее 20 минут (1200 секунд) значение выброса г/с пересчитывается в соответствии с примечаниями к         ( п.2.3 ОНД–86):

Gi = Gi расч. * t / 1200, г/с               (21)

          где Gi расч – рассчитанный максимально разовый выброс i-ого

                             загрязняющего вещества;

          t – максимальная продолжительность непрерывного процесса

                сварки (резки, наплавки), сек.

Вещество: оксид углерода.

Удельное выделение К = 63,400

Mоу = 63,4*750*(1 – 0)* 0,000001 = 0,04755 т/г

Gоу = 63,4*1* (600/1200) * (1 - 0) / 3600 = 0,0088056 г/с

Вещество: диоксид азота

Удельное выделение К = 64,100

Mда = 64,1*750*(1 – 0)* 0,000001 = 0,048075 т/г

Gда = 63,4*1* (600/1200) * (1 - 0) / 3600 = 0,0089028 г/с

Вещество: марганец и его соединения

Удельное выделение К = 1,900

Mмар = 1,9*750*(1 – 0)* 0,000001 = 0,001425 т/г

Gмар = 1,9*1* (600/1200) * (1 - 0) / 3600 = 0,0002639 г/с

Вещество: оксид железа

Удельное выделение К =129,100

Mож = 129,1*750*(1 – 0)* 0,000001 = 0,096825 т/г

Gож = 129,1*1* (600/1200) * (1 - 0) / 3600 = 0,0179306 г/с

    В табл. 2.7 представлены итоговые результаты вредных выбросов при газовой резке металла.

Таблица 2.7 -  Итоговые данные вредных выбросов при газовой резке металла – источник №0005

Вредное вещество

Код вещества

Валовый выброс

(т/г)

Максимально разовый выброс (г/с)

Диоксид азота

Оксид железа

Марганец и его соединения

Оксид углерода

301

123

143

337

0,0480750

0,0968250

0,0014250

0,0475500

0,0089028

0,0179306

0,0002639

0,0088056

2.2.4 Расчет вредных выбросов при сварочных работах

Вредные выбросы:

а) сварочный аэрозоль;

б) пыль неорганическая;

в) диоксид азота;

г) оксид углерода;

д) фтористые соединения; е) фтористый водород.

В табл. 2.8 представлены исходные данные по цеху ремонта механического и электрооборудования.

Таблица 2.8 - Исходные данные о вредных выбросах при сварочных работах по электромашинному цеху – источник № 0005

Показатель

Значение показателя

Источник выброса – сварочные работы

Технологическая операция: ручная дуговая сварка сталей штучными электрод

Марка электродов

АНО – 4

Расход электродов в год, В, кг

300

Максимальный расход электродов в час, b, кг

0,5

Время работы сварочного поста, ч/г

1750

Степень очистки воздуха

ГОУ – отсутствует

Удельный показатель выделений ЗВ:

Сварочный аэрозоль, г/кг

в том числе:

Марганец и его соединения, г/кг

Железа оксид, г/кг

Пыль неорганическая (содержание SiO2 до 70%), г/кг

17,800

1,6600

15,730

0,4100

Расчет валового выброса производится по формуле:

М = Кт * В * 10-6 * (1 - η), т/г                            (22)

где В – расход применяемого сырья и материалов кг/г;

Кт – удельный показатель выделения загрязняющего вещества

                  на единицу массы расходуемого сырья и материалов, г/кг;

η – степень очистки воздуха в соответствующем аппарате,

                которым снабжена группа технических агрегатов.

Расчет максимально разового выброса производится по формуле:

G = Кт * b / 3600, г/с                       (23)

где b – максимальное количество сварочных материалов,

             расходуемых в течение рабочего часа, кг/ч.

Загрязняющее вещество (3В):

Сварочный аэрозоль

Мса = 17,8*300*10-6*(1 – 0) = 0,005340 т/г

Gса = 17,8*0,5/3600 = 0,002472 г/с

в том числе:

Железа оксид

Мож = 15,73*300*10-6*(1 – 0) = 0,004719 т/г

Gож = 15,73*0,5/3600 = 0,002185 г/с

Марганец и его соединения

Ммар = 1,66*300*10-6*(1 – 0) = 0,000498 т/г

Gмар = 1,66*0,5/3600 = 0,000231 г/с

Пыль неорганическая (содержание SiO2 до 70 %)

Мпн = 0,41*300*10-6*(1 – 0) = 0,000123 т/г

Gпн = 0,41*0,5/3600 = 0,000057 г/с

Таблица 2.9-Исходные данные о вредных выбросах при сварочных работах по электромашинному цеху (с другой маркой электродов) - источник№ 0005

Показатель

Значение показателя

Источник – 0005

Наименование технологической операции:

Ручная дуговая сварка сталей штучными электрод

Марка электродов

УОНИ – 13/45

Расход электродов в год, В, кг

50

Максимальный расход электродов в час, b, кг

0,5

Время работы сварочного поста, ч/г

1750

Степень очистки воздуха

ГОУ – отсутствует

Удельный показатель выделений ЗВ:

Сварочный аэрозоль, г/кг

в том числе:

Марганец и его соединения, г/кг

Железа оксид, г/кг

Пыль неорганическая (содержание SiO2 до 70%), г/кг

Фториды, в пересчете на фтор, г/кг:

Фтористый водород, г/кг

Диоксид азота, г/кг

Оксид углерода, г/кг

16,400

0,9200

10,690

1,4000

3,3000

0,7500

1,5000

13,300

Продолжение таблицы 2.9

          Расчет производиться согласно формул и (22-23).

Сварочный аэрозоль

Мса = 16,4*50*10-6*(1 – 0) = 0,000820 т/г

Gса = 16,4*0,5/3600 = 0,002278 г/с

в том числе:

Железа оксид

Мож = 10,69*50*10-6*(1 – 0) = 0,000535 т/г

Gож= 10,69*0,5/3600 = 0,001485 г/с

Марганец и его соединения

Ммар = 0,92*50*10-6*(1 – 0) = 0,000046 т/г

Gмар = 0,92*0,5/3600 = 0,000128 г/с

Пыль неорганическая (содержание SiO2 до 70 %)

Мпн = 1,4*50*10-6*(1 – 0) = 0,000070 т/г

Gпн = 1,4*0,5/3600 = 0,000194 г/с

Фтористые соединения, плохо растворимые

Мфс = 3,3*50*10-6*(1 – 0) = 0,000165 т/г

Gфс= 3,3*0,5/3600 = 0,000458 г/с

Фтористый водород (по фтору)

Мфв = 0,75*50*10-6*(1 – 0) = 0,000038 т/г

Gфв= 0,75*0,5/3600 = 0,000104 г/с

          Диоксид азота

Мда = 1,5*50*10-6*(1 – 0) = 0,000075 т/г

Gда= 1,5*0,5/3600 = 0,000208 г/с

          Оксид углерода

Моу = 13,3*50*10-6*(1 – 0) = 0,000665 т/г

Gоу= 13,3*0,5/3600 = 0,001847 г/с

Таблица 2.10 - Результаты расчета выбросов по источнику: ручная дуговая сварка

    Вредное вещество

Код вещества

Валовый выброс

(т/г)

Максимально разовый выброс (г/с)

Железа оксид

Марганец и его соединения

Пыль неорганическая (содержание SiO2 от 20 до 70%)

Азота диоксид

Оксид углерода

Фтористые соединения,

плохо растворимые

Фтористый водород

123

143

2908

301

337

344

342

0,005254

0,000544

0,000193

0,000075

0,000655

0,000165

0,000038

0,002185

0,000231

0,000194

0,000208

0,001847

0,000458

0,000104


Таблица 2.11 - Итоговыйрезультат расчета выбросов по источнику 0005

(сварка и резка – табл. 2.10 + табл. 2.11)

  Вредное вещество

Код вещества

Валовый выброс

(т/г)

Максимально разовый выброс (г/с)

Железа оксид

Марганец и его соединения

Пыль неорганическая (содержание SiO2 от 20 до 70%)

Азота диоксид

Оксид углерода

Фтористые соединения,

плохо растворимые

Фтористый водород

123

143

2908

301

337

344

342

0,102079

0,001969

0,000193

0,048150

0,048215

0,000165

0,000038

0,017931

0,000264

0,000194

0,008903

0,008806

0,000458

0,000104

Цех ремонта деталей вагонов

(колесный цех)

сварочный пост по наплавке балок и боковин (№ 0006)

сварочный пост в триангельном отделении (№ 0006)      

Таблица 2.12 –исходные данные источника № 0006

Показатель

Значение показателя

Источник – 0006

Наименование технологической операции:

Ручная дуговая сварка сталей штучными электрод

Марка электродов

АНО – 4

Расход электродов в год, В, кг

3100

Максимальный расход электродов в час, b, кг

1,6

Время работы сварочного поста, ч/г

2008

Степень очистки воздуха

ГОУ – отсутствует

Удельный показатель выделений ЗВ:

Сварочный аэрозоль, г/кг

в том числе:

Марганец и его соединения, г/кг

Железа оксид, г/кг

Пыль неорганическая (содержание SiO2 до 70%), г/кг

17,800

1,6600

15,730

0,4100

Расчет производим согласно источника0005 по формулам (22-23):

        

          Сварочный аэрозоль

Мса = 17,8*3100*10-6*(1 – 0) = 0,055180 т/г

Gса= 17,8*1,6/3600 = 0,007911 г/с

в том числе:

          Железа оксид

Мож = 15,73*3100*10-6*(1 – 0) = 0,048763 т/г

Gож= 15,73*1,6/3600 = 0,006991 г/с

Марганец и его соединения

Ммар = 1,66*3100*10-6*(1 – 0) = 0,005146 т/г

Gмар= 1,66*1,6/3600 = 0,000738 г/с

Пыль неорганическая (содержание SiO2 до 70 %)

Мпн = 0,41*3100*10-6*(1 – 0) = 0,001271 т/г

Gпн= 0,41*1,6/3600 = 0,000182 г/с

                    

Таблица 2.13 –сварочный пост по наплавке балок и боковин, сварочный пост в триангельном отделении источник № 0006 (марка электродов-УОНИ-13/45)

Показатель

Значение показателя

Источник – 0006

Наименование технологической операции:

Ручная дуговая сварка сталей штучными электрод

Марка электродов

УОНИ – 13/45

Расход электродов в год, В, кг

500

Максимальный расход электродов в час, b, кг

0,5

Время работы сварочного поста, ч/г

2008

Степень очистки воздуха

ГОУ – отсутствует

Удельный показатель выделений ЗВ:

Сварочный аэрозоль, г/кг

в том числе:

Марганец и его соединения, г/кг

Железа оксид, г/кг

Пыль неорганическая (содержание SiO2 до 70%), г/кг

Фториды, в пересчете на фтор, г/кг:

Фтористый водород, г/кг

Диоксид азота, г/кг

Оксид углерода, г/кг

16,400

0,9200

10,690

1,4000

3,3000

0,7500

1,5000

13,300

          Расчет производим согласно формул (19-20)

   

          Сварочный аэрозоль

Мса = 16,4*500*10-6*(1 – 0) = 0,00820 т/г

Gса= 16,4*0,5/3600 = 0,002278 г/с

в том числе:

          Железа оксид

Мож = 10,69*500*10-6*(1 – 0) = 0,005345 т/г

Gож= 10,69*0,5/3600 = 0,001485 г/с

          Марганец и его соединения

Ммар = 0,92*500*10-6*(1 – 0) = 0,000460 т/г

Gмар= 0,92*0,5/3600 = 0,000128 г/с

          Пыль неорганическая (содержание SiO2 до 70 %)

Мпн = 1,4*500*10-6*(1 – 0) = 0,000700 т/г

Gпн= 1,4*0,5/3600 = 0,000194 г/с

Фтористые соединения, плохо растворимые

Мфс = 3,3*500*10-6*(1 – 0) = 0,001650 т/г

Gфс= 3,3*0,5/3600 = 0,000458 г/с

          Фтористый водород (по фтору)

Мфв = 0,75*500*10-6*(1 – 0) = 0,000375 т/г

Gфв= 0,75*0,5/3600 = 0,000104 г/с

          Диоксид азота

Мда = 1,5*500*10-6*(1 – 0) = 0,000750 т/г

Gда= 1,5*0,5/3600 = 0,000208 г/с

          Оксид углерода

Моу = 13,3*500*10-6*(1 – 0) = 0,006650 т/г

Gоу = 13,3*0,5/3600 = 0,001847 г/с

Таблица 2.14- Итоговый  результат расчета выбросов по источнику №0006

   Вредное вещество

Код вещества

Валовый выброс

(т/г)

Максимально разовый выброс (г/с)

Железа оксид

Марганец и его соединения

Пыль неорганическая (содержание SiO2 от 20 до 70%)

Азота диоксид

Оксид углерода

Фтористые соединения,

плохо растворимые

Фтористый водород

123

143

2908

301

337

344

342

0,054108

0,005606

0,001971

0,000750

0,006650

0,001650

0,000375

0,006991

0,000738

0,000194

0,000208

0,001847

0,000458

0,000104

Цех текущего ремонта ТР-3

Сварочный пост в тележечномотделении (№ 0007)

          Сварочный пост в сборочномотделении (№ 0007)

Таблица 2.15 –исходные данные источника № 0007

Исходные данные

Показатель

Значение показателя

Источник – 0007

Наименование технологической операции:

Ручная дуговая сварка сталей штучными электрод

Марка электродов

АНО – 4

Расход электродов в год, В, кг

3100

Максимальный расход электродов в час, b, кг

5,0

Время работы сварочного поста, ч/г

3500

Степень очистки воздуха

ГОУ – отсутствует

Удельный показатель выделений ЗВ:

Сварочный аэрозоль, г/кг

в том числе:

Марганец и его соединения, г/кг

Железа оксид, г/кг

Пыль неорганическая (содержание SiO2 до 70%), г/кг

17,800

1,6600

15,730

0,4100


Расчеты производим согласно формул (21-23)

Сварочный аэрозоль

Мса = 17,8*16000*10-6*(1 – 0) = 0,284800

Gса= 17,8*5/3600 = 0,024722 г/с

в том числе:

         Железа оксид

Мож = 15,73*16000*10-6*(1 – 0) = 0,251680 т/г

Gож= 15,73*5/3600 = 0,021847 г/с

           Марганец и его соединения

Ммар = 1,66*16000*10-6*(1 – 0) = 0,026560 т/г

Gмар= 1,66*5/3600 = 0,002306 г/с

Пыль неорганическая (содержание SiO2 до 70 %)

Мпн = 0,41*16000*10-6*(1 – 0) = 0,006560 т/г

Gпн= 0,41*5/3600 = 0,000569 г/с

Таблица 2.16 –исходные данные источника № 0007(М.Эл.УОНИ-13/45)

Показатель

Значение показателя

Источник – 0007

Наименование технологической операции:

Ручная дуговая сварка сталей штучными электрод

Марка электродов

УОНИ – 13/45

Расход электродов в год, В, кг

500

Максимальный расход электродов в час, b, кг

1,0

Время работы сварочного поста, ч/г

3500

Степень очистки воздуха

ГОУ – отсутствует

Удельный показатель выделений ЗВ:

Сварочный аэрозоль, г/кг

в том числе:

Марганец и его соединения, г/кг

Железа оксид, г/кг

Пыль неорганическая (содержание SiO2 до 70%), г/кг

Фториды, в пересчете на фтор, г/кг:

Фтористый водород, г/кг

Диоксид азота, г/кг

Оксид углерода, г/кг

16,400

0,9200

10,690

1,4000

3,3000

0,7500

1,5000

13,300

Расчет производим согласно ранее используемых формул (19-20)  

          Сварочный аэрозоль

Мса = 16,4*500*10-6*(1 – 0) = 0,00820 т/г

Gса= 16,4*1/3600 = 0,004556 г/с

в том числе:

          Железа оксид

Мож = 10,69*500*10-6*(1 – 0) = 0,005345 т/г

Gож= 10,69*1/3600 = 0,002969 г/с

          Марганец и его соединения

Ммар = 0,92*500*10-6*(1 – 0) = 0,000460 т/г

Gмар= 0,92*1/3600 = 0,000256 г/с

          Пыль неорганическая (содержание SiO2 до 70 %)

Мпн = 1,4*500*10-6*(1 – 0) = 0,000700 т/г

Gпн= 1,4*1/3600 = 0,000389 г/с

          Фтористые соединения, плохо растворимые

Мфс = 3,3*500*10-6*(1 – 0) = 0,001650 т/г

Gфс = 3,3*1/3600 = 0,000917 г/с

          Фтористый водород (по фтору)

Мфв = 0,75*500*10-6*(1 – 0) = 0,000375 т/г

Gфв= 0,75*1/3600 = 0,000208 г/с

          Диоксид азота

Мда = 1,5*500*10-6*(1 – 0) = 0,000750 т/г

Gда= 1,5*1/3600 = 0,000417 г/с

          Оксид углерода

Моу = 13,3*500*10-6*(1 – 0) = 0,006650 т/г

Gоу= 13,3*1/3600 = 0,003694 г/с

Таблица 2.17- Итоговый  результат расчета выбросов по источнику № 0007

   Вредное вещество

Код вещества

Валовый выброс

(т/г)

Максимально разовый выброс (г/с)

Железа оксид

Марганец и его соединения

Пыль неорганическая (содержание SiO2 от 20 до 70%)

Азота диоксид

Оксид углерода

Фтористые соединения,

плохо растворимые

Фтористый водород

123

143

2908

301

337

344

342

0,257025

0,027020

0,007260

0,000750

0,006650

0,001650

0,000375

0,021847

0,002306

0,000389

0,000417

0,003694

0,000917

0,000208

Цех текущего ремонта ТР-2

Два сварочных поста (№ 0008, № 0008)

Таблица 2.18 - Исходные данные сварочных постов № 0008

Показатель

Значение показателя

Источник – 0008

Наименование технологической операции:

Ручная дуговая сварка сталей штучными электрод

Марка электродов

АНО – 4

Расход электродов в год, В, кг

250

Максимальный расход электродов в час, b, кг

0,5

Время работы сварочного поста, ч/г

1250

Степень очистки воздуха

ГОУ – отсутствует

Удельный показатель выделений ЗВ:

Сварочный аэрозоль, г/кг

в том числе:

Марганец и его соединения, г/кг

Железа оксид, г/кг

Пыль неорганическая (содержание SiO2 до 70%), г/кг

17,800

1,6600

15,730

0,4100

Продолжение таблицы 2.18

Расчеты производим согласно формул (19-20)

          Сварочный аэрозоль

Мса = 17,8*250*10-6*(1 – 0) = 0,004450 т/г

Gса= 17,8*0,5/3600 = 0,002472 г/с

в том числе:

          Железа оксид

Мож = 15,73*250*10-6*(1 – 0) = 0,003933 т/г

Gож= 15,73*0,5/3600 = 0,002185 г/с

          Марганец и его соединения

Ммар = 1,66*250*10-6*(1 – 0) = 0,000415 т/г

Gмар= 1,66*0,5/3600 = 0,000231 г/с

          Пыль неорганическая (содержание SiO2 до 70 %)

Мпн = 0,41*250*10-6*(1 – 0) = 0,000103 т/г

Gпн= 0,41*05/3600 = 0,000057 г/с

Таблица 2.19-Исходные данные сварочных постов № 0008

Показатель

Значение показателя

Источник – 0008

Наименование технологической операции:

Ручная дуговая сварка сталей штучными электрод

Марка электродов

УОНИ – 13/45

Расход электродов в год, В, кг

80

Максимальный расход электродов в час, b, кг

0,5

Время работы сварочного поста, ч/г

1250

Степень очистки воздуха

ГОУ – отсутствует

Удельный показатель выделений ЗВ:

Сварочный аэрозоль, г/кг

в том числе:

Марганец и его соединения, г/кг

Железа оксид, г/кг

Пыль неорганическая (содержание SiO2 до 70%), г/кг

Фториды, в пересчете на фтор, г/кг:

Фтористый водород, г/кг

Диоксид азота, г/кг

Оксид углерода, г/кг

16,400

0,9200

10,690

1,4000

3,3000

0,7500

1,5000

13,300

        

          Расчет производим согласно формул (19-20)

          Сварочный аэрозоль

Мса = 16,4*80*10-6*(1 – 0) = 0,001312 т/г

Gса= 16,4*0,5/3600 = 0,002278 г/с

в том числе:

          Железа оксид

Мож = 10,69*80*10-6*(1 – 0) = 0,000855 т/г

Gож= 10,69*0,5/3600 = 0,001485 г/с

          Марганец и его соединения

Ммар = 0,92*80*10-6*(1 – 0) = 0,000074 т/г

Gмар= 0,92*0,5/3600 = 0,000128 г/с

          Пыль неорганическая (содержание SiO2 до 70 %)

Мпн = 1,4*80*10-6*(1 – 0) = 0,000112 т/г

Gпн= 1,4*0,5/3600 = 0,000194 г/с

          Фтористые соединения, плохо растворимые

Мфс = 3,3*80*10-6*(1 – 0) = 0,000264 т/г

Gфс= 3,3*0,5/3600 = 0,000458 г/с

          Фтористый водород (по фтору)

Мфв = 0,75*80*10-6*(1 – 0) = 0,000060 т/г

Gфв= 0,75*0,5/3600 = 0,000104 г/с

          Диоксид азота

Мда = 1,5*80*10-6*(1 – 0) = 0,000120 т/г

Gда= 1,5*0,5/3600 = 0,000208 г/с

          Оксид углерода

Моу = 13,3*80*10-6*(1 – 0) = 0,001064 т/г

Gоу= 13,3*0,5/3600 = 0,001847 г/с

Таблица 2.20-Итоговый  результат расчета выбросов по источнику № 0008

   Вредное вещество

Код вещества

Валовый выброс

(т/г)

Максимально разовый выброс (г/с)

Железа оксид

Марганец и его соединения

Пыль неорганическая (содержание SiO2 от 20 до 70%)

Азота диоксид

Оксид углерода

Фтористые соединения,

плохо растворимые

Фтористый водород

123

143

2908

301

337

344

342

0,004788

0,000489

0,000215

0,000120

0,001064

0,000264

0,000060

0,002185

0,000231

0,000194

0,000208

0,001847

0,000458

0,000104

ТР-1

Два сварочных поста (№ 0004, № 0004)

Таблица 2.21-Исходные данные сварочных постов № 0004

Показатель

Значение показателя

Источник – 0004

Наименование технологической операции:

Ручная дуговая сварка сталей штучными электрод

Марка электродов

АНО – 4

Расход электродов в год, В, кг

450

Максимальный расход электродов в час, b, кг

0,5

Время работы сварочного поста, ч/г

1250

Степень очистки воздуха

ГОУ – отсутствует

Удельный показатель выделений ЗВ:

Сварочный аэрозоль, г/кг

в том числе:

Марганец и его соединения, г/кг

Железа оксид, г/кг

Пыль неорганическая (содержание SiO2 до 70 %), г/кг

17,800

1,6600

15,730

0,4100

Продолжение таблицы 2.21

Расчет производим согласно формул (22-23)

          Сварочный аэрозоль

Мса = 17,8*450*10-6*(1 – 0) = 0,008010 т/г

Gса= 17,8*0,5/3600 = 0,002472 г/с

в том числе:

          Железа оксид

Мож = 15,73*450*10-6*(1 – 0) = 0,007079 т/г

Gож= 15,73*0,5/3600 = 0,002185 г/с

          Марганец и его соединения

Ммар = 1,66*450*10-6*(1 – 0) = 0,000747 т/г

Gмар= 1,66*0,5/3600 = 0,000231 г/с

          Пыль неорганическая (содержание SiO2 до 70 %)

Мпн = 0,41*450*10-6*(1 – 0) = 0,000185 т/г

Gпн= 0,41*05/3600 = 0,000057 г/с

Таблица 2.22 – Исходные данные сварочных постов №0004

Показатель

Значение показателя

Источник – 0004

Наименование технологической операции:

Ручная дуговая сварка сталей штучными электрод

Марка электродов

УОНИ – 13/45

Расход электродов в год, В, кг

50

Максимальный расход электродов в час, b, кг

0,5

Время работы сварочного поста, ч/г

1250

Степень очистки воздуха

ГОУ – отсутствует

Удельный показатель выделений ЗВ:

Сварочный аэрозоль, г/кг

в том числе:

Марганец и его соединения, г/кг

Железа оксид, г/кг

Пыль неорганическая (содержание SiO2 до 70%), г/кг

Фториды, в пересчете на фтор, г/кг:

Фтористый водород, г/кг

Диоксид азота, г/кг

Оксид углерода, г/кг

16,400

0,9200

10,690

1,4000

3,3000

0,7500

1,5000

13,300

   

          Расчет производим согласно формул (19-20)

          Сварочный аэрозоль

Мса = 16,4*50*10-6*(1 – 0) = 0,000820 т/г

Gса= 16,4*0,5/3600 = 0,002278 г/с

в том числе:

          Железа оксид

Мож = 10,69*50*10-6*(1 – 0) = 0,000535 т/г

Gож= 10,69*0,5/3600 = 0,001485 г/с

         

          Марганец и его соединения

Ммар = 0,92*50*10-6*(1 – 0) = 0,000046 т/г

Gмар= 0,92*0,5/3600 = 0,000128 г/с

          Пыль неорганическая (содержание SiO2 до 70 %)

Мпн = 1,4*50*10-6*(1 – 0) = 0,000070 т/г

Gпн= 1,4*0,5/3600 = 0,000194 г/с

          Фтористые соединения, плохо растворимые

Мфс = 3,3*50*10-6*(1 – 0) = 0,000165 т/г

Gфс = 3,3*0,5/3600 = 0,000458 г/с

          Фтористый водород (по фтору)

Мфв = 0,75*50*10-6*(1 – 0) = 0,000038 т/г

Gфв= 0,75*0,5/3600 = 0,000104 г/с

           Диоксид азота

Мда = 1,5*50*10-6*(1 – 0) = 0,000075 т/г

Gда= 1,5*0,5/3600 = 0,000208 г/с

          Оксид углерода

Моу = 13,3*50*10-6*(1 – 0) = 0,000665 т/г

Gоу= 13,3*0,5/3600 = 0,001847 г/с

Таблица 2.23 - Итоговыйрезультат расчета выбросов по источнику № 0004

    Вредное вещество

Код вещества

Валовый выброс

(т/г)

Максимально разовый выброс (г/с)

Железа оксид

Марганец и его соединения

Пыль неорганическая (содержание SiO2 от 20 до 70 %)

Азота диоксид

Оксид углерода

Фтористые соединения,

плохо растворимые

Фтористый водород

123

143

2908

301

337

344

342

0,007613

0,000793

0,000255

0,000075

0,000665

0,000165

0,000038

0,002185

0,000231

0,000194

0,000208

0,001847

0,000458

0,000104

2.2.5 Расчет вредных выбросов при нанесении лакокрасочных материалов

Вредные выбросы:

а) аэрозоль краски;

б) Уайт-спирит;

в) ксилол.

В табл. 2.24 представлены исходные данные при покраске вагонов (осуществляемой в локомотивном депо в рамках экипировки локомотивов и вагонов).

Таблица 2.24 - Исходные данные о вредных выбросах при покраске вагонов источник № 0009 (Лак БТ-985)

Показатель

Значение показателя

Источник выброса – лакокрасочные работы

Технологическая операция: покраска вагонов

Лакокрасочный материал

Лак БТ – 985

Способ окраски

Пневматический

Количество ЛКМ, израсходованного за год, кг, m

5400,0

Максимальное количество ЛКМ, израсходованного за день, кг, m1

14,0

Количество часов работы в день, ч, t

10

Максимальное непрерывное время процесса окраски, сек

1200

Доля летучей части (растворителя), %, f2

60

Доля сухого остатка, %, f1

40

Доля краски, потерянной в виде аэрозоля, %, D

30

Доля растворителя, выделяющегося при окраске, %, P1

25

Доля растворителя, выделяющегося при сушке, %, P2

75

Содержание уайт – спирита в летучей части, %, fi

100

Коэффициент оседания выброс аэрозоля краски

0,3

Очистное оборудование

Отсутствует

         Расчетные формулы

          1.Аэрозоль краски

М=m * f1 * D *Кос*(100 – E1)* 10-9, т/г                           (24)

      G= m1 * f1 * D *Кос*(100 – E1)/106*3.6*t, г/с                   (25)

где М – валовый выброс аэрозоля краски;

      G – максимально разовый выброс аэрозоля краски;

      m – количество ЛКМ израсходованного за год, кг;

     m1 – максимальное количество ЛКМ израсходованного в течение    рабочего дня, кг;

          t – количество часов работы в день;

          f1 – доля сухой части ЛКМ, %;

          D – доля краски, потерянной в виде аэрозоля при различных способах окраски, %;

          E1 – эффективность улавливания очистной установкой твердых и жидких частиц, %

          При расчете валового и максимально разового выброса аэрозоля краски учтен коэффициент его оседания (Кос) = 0,3 (при длине воздуховода 15 метров)

          2. Остальные компоненты ЛКМ

          а) при нанесении ЛКМ

          Мi=m * f2 *P1*fi *(100 – E2)* 10-11, т/г                         (26)

       Gi= m1 * f2 * P1*fi *(100 – E2)/108*3.6*t, г/с                    (27)

          где М – валовый выброс вредного вещества;

          G – максимально разовый выброс вредного вещества;

          m – количество ЛКМ израсходованного за год, кг;

          m1 – максимальное количество ЛКМ израсходованного в течение рабочего дня, кг;

          t – количество часов работы в день;

          f2 – доля летучей части ЛКМ, %;

          Р1 – доля растворителя, выделяющегося при окраске, %;

          fi – содержание i – ого компонента в летучей части ЛКМ, %

          E2–эффективность улавливания очистной установкой газообразных и парообразных компонентов, %

          б) при сушке нанесенного покрытия

Мi=m * f2 *P2*fi *(100 – E2)* 10-11, т/г                      (28)

Gi= m1 * f2 * P2*fi *(100 – E2)/108*3.6*t, г/с             (29)

          где М – валовый выброс вредного вещества;

         G – максимально разовый выброс вредного вещества;

          m – количество ЛКМ израсходованного за год, кг;

          m1 – максимальное количество ЛКМ израсходованного в течение рабочего дня, кг;

           t – количество часов работы в день;

           f2 – доля летучей части ЛКМ, %;

           Р2 – доля растворителя, выделяющегося при сушке, %;

           fi – содержание i – ого компонента в летучей части ЛКМ, %

           E2 – эффективность улавливания очистной установкой газообразных и парообразных компонентов, %

          Примечание:

В том случае, если продолжительность непрерывного процесса окраски составляет менее 20 минут (1200 секунд) значение максимально разового выброса г/с пересчитывается в соответствии с примечанием к (п.2.3 ОНД – 86): 

Gi=Gi расч* t/ 1200, г/с                         (30)

          где Giрасч - рассчитанный максимально разовый выброс загрязняющего вещества, г/с;

          t – максимальная продолжительность непрерывного процесса окраски, сек.

          Производим расчеты:

          Аэрозоль краски   

М=5400*40*30*0,3*(100-0)*0,000000001=0,194400 т/г

G=14*40*30*0,3*(100-0)/(1000000*3,6*10)=0,0140000 г/с

Уайт – спирит

Нанесение ЛКМ

   

М=5400*60*25*100*(100-0)*0,00000000001=0,810000 т/г

G=14*60*25*100*(100-0)/(100000000*3,6*10)=0,0583333 г/с

Сушка покрытия

М=5400*60*75*100*(100-0)*0,00000000001=2,430000 т/г

G=14*60*75*100*(100-0)/(100000000*3,6*10)=0,175000 г/с  

Таблица 2.25 - Результаты расчета выбросов по источнику № 0009: покраска вагонов (при нанесениеЛКМ)

а) Аэрозоль краски: 0,19440000 т/г

                                  0,01400000 г/с

1

Вредное вещество

Валовый выброс (т/г)

Максимально разовый выброс г/с

Уайт – спирит

0,8100000

0,0583333

б) При сушке покрытия     

2

Вредное вещество

Валовый выброс (т/г)

Максимально разовый выброс г/с

Уайт – спирит

2,4300000

0,1750000

Всего:

3

Вредное вещество

Валовый выброс (т/г)

Максимально разовый выброс г/с

Уайт – спирит

Аэрозоль краски

3,2400000

0,1944000

0,1750000

0,0140000

Таблица 2.26 – Исходные данные о вредных выбросах при покраске вагонов источник № 0009(Эмаль ПФ-115)

Показатель

Значение показателя

Источник – 0009

Наименование технологической операции:

покраска вагонов

Лакокрасочный материал

Эмаль ПФ – 115

Способ окраски

Пневматический

Количество ЛКМ, израсходованного за год, кг, m

30630,0

Максимальное количество ЛКМ, израсходованного за день, кг, m1

81,0

Количество часов работы в день, ч, t

10

Максимальное непрерывное время процесса окраски, сек

1200

Доля летучей части (растворителя), %, f2

45

Доля сухого остатка, %, f1

55

Доля краски, потерянной в виде аэрозоля, %, D

30

Доля растворителя, выделяющегося при окраске, %, P1

25

Доля растворителя, выделяющегося при сушке, %, P2

75

Содержание уайт-спирита в летучей части, %, fi

50

Содержание ксилола в летучей части, %, fi

50

Коэффициент оседания выброс аэрозоля краски

0,3

Очистное оборудование

Отсутствует

Продолжение таблицы 2.26

          Расчет производим согласно формул (28-29)        

          Аэрозоль краски   

М=30630*55*30*0,3*(100-0)*0,000000001=0,15161850 т/г

G=81*55*30*0,3*(100-0)/(1000000*3,6*10)=0,111375 г/с

    

          Уайт – спирит

          Нанесение ЛКМ

М=30630*45*25*50*(100-0)*0,00000000001=0,7229375 т/г

G=81*45*25*50*(100-0)/(100000000*3,6*10)=0,1265625 г/с

          Сушка покрытия

М=30630*45*75*50*(100-0)*0,00000000001=5,1688125 т/г

G=81*45*75*50*(100-0)/(100000000*3,6*10)=0,3796875 г/с

         

          Ксилол

          Нанесение ЛКМ   

М=30630*45*25*50*(100-0)*0,00000000001=0,7229375 т/г

G=81*45*25*50*(100-0)/(100000000*3,6*10)=0,1265625 г/с

          Сушка покрытия

М=30630*45*75*50*(100-0)*0,00000000001=5,1688125 т/г

G=81*45*75*50*(100-0)/(100000000*3,6*10)=0,3796875 г/с

Таблица 2.27 - Результаты расчета выбросов по источнику 0009: покраска вагонов (при нанесении ЛКМ)

а) Аэрозоль краски: 1,5161850 т/г

0,1113750 г/с

1

Вредное вещество

Валовый выброс (т/г)

Максимально разовый выброс г/с

Уайт – спирит

Ксилол

1,7229375

1,7229375

0,1265625

0,1265625

б) При сушке покрытия

2

Вредное вещество

Валовый выброс (т/г)

Максимально разовый выброс г/с

Уайт – спирит

Ксилол

5,1688125

5,1688125

0,3796875

0,3796875

Всего:

3

Вредное вещество

Валовый выброс (т/г)

Максимально разовый выброс г/с

Уайт – спирит

Ксилол

Аэрозоль краски

6,8917500

6,8917500

1,5161850

0,3796875

0,3796875

0,1113750

Таблица 2.28 - Результаты расчета выбросов по предприятию при нанесении ЛКМ (0009)

а) Аэрозоль краски: 1,7105855 т/г

0,1113750 г/с

1

Вредное вещество

Валовый выброс (т/г)

Максимально разовый выброс г/с

Уайт – спирит

Ксилол

2,5329375

1,7229375

0,1265625

0,1265625

б) При сушке покрытия

2

Вредное вещество

Валовый выброс (т/г)

Максимально разовый выброс г/с

7,5988125

5,1688125

0,3796875

0,3796875

7,5988125

5,1688125

Всего:

3

Вредное вещество

Валовый выброс (т/г)

Максимально разовый выброс г/с

Уайт – спирит

Ксилол

Аэрозоль краски

10,1317500

6,8917500

1,5161850

0,3796875

0,3796875

0,1113750

2.2.6 Суммарные выбросы загрязняющих веществ в атмосферу источниками локомотивного депо

Сводим вместе итоговые результаты вредных выбросов по всем источникам, согласно табл. 2.29, с кодовым обозначением источника.

Таблица 2.29 - Валовые и максимально-разовые выбросы локомотивного депо

Источник

Наименование ЗВ

Валовый выброс П, т/год

Максимально-разовый выброс, М, г/с

Кузнечное отделение – источник 0001

Диоксид азота

0,025

0,0020

Оксид азота

0,004

0,0003

Диоксид серы

0,835

0,0644

Оксид углерода

0,473

0,0365

Зола углей

1,034

0,07978

Механический цех –

источник 0002

Пыль абразивная

0,006

0,0024

Пыль механичес-кая

0,009

0,0036

Электросварка и газовая резка – источник 0005 (электромашин-ный цех)

Оксид железа

0,102

0,0179

Марганец и его соединения

0,002

0,00026

Пыль неоргани-ческая

0,0002

0,00019

Диоксид азота

0,048

0,0089

Оксид углерода

0,048

0,0089

Фтористые соединения

0,0002

0,00046

Фтористый водород

0,0004

0,0001

Электросварка – источник 0006 (колесный цех)

Оксид железа

0,054

0,0070

Марганец и его соединения

0,0056

0,00074

Пыль неоргани-ческая

0,0020

0,00019

Диоксид азота

0,0008

0,0002

Оксид углерода

0,0067

0,0018

Фтористые соединения

0,0017

0,00045

Фтористый водород

0,0004

0,00010

Электросварка – источник 0007 (сборочный цех ТР-3)

Оксид железа

0,257

0,0218

Марганец и его соединения

0,027

0,0023

Пыль неоргани-ческая

0,0073

0,0004

Диоксид азота

0,0008

0,0004

Оксид углерода

0,0067

0,004

Фтористые соединения

0,0017

0,0009

Фтористый водород

0,0004

0,0002

Электросварка – источник 0008 (цех ТР-2

неразрушающего контроля)

Оксид железа

0,005

0,0022

Марганец и его соединения

0,0005

0,00023

Пыль неоргани-ческая

0,0002

0,00019

Диоксид азота

0,0001

0,0002

Оксид углерода

0,0011

0,0018

Фтористые соединения

0,00026

0,00046

Фтористый водород

0,00006

0,00010

Электросварка – источник 0004 (цех ТР-1)

Оксид железа

0,0076

0,0022

Марганец и его соединения

0,008

0,00023

Пыль неоргани-ческая

0,003

0,00019

Диоксид азота

0,0008

0,00021

Оксид углерода

0,00067

0,0018

Фтористые соединения

0,00002

0,00046

Фтористый водород

0,00004

0,0001

Лакокраска – источник 0009

Уайт-спирит

10,132

0,3797

Ксилол

6,892

0,3797

Аэрозоль краски

1,516

0,1114

3. ПРОЕКТ МЕРОПРИЯТИЙ ПО УЛУЧШЕНИЮ ЭКОЛОГИЧЕСКОЙ ОБСТАНОВКИ В ЛОКОМОТИВНОМ ДЕПО ПЕРЕРВА

3.1 Инженерное решение для снижения загрязнения атмосферы и совершенства технологического процесса

Очистка промышленных газовых выбросов от паров легколетучих органических растворителей и их возврат в технологический процесс являются актуальной задачей, поскольку ежегодно в атмосферу выбрасывается до 300 тыс. т органических растворителей в парообразном состоянии. основной источник загрязнений – производство полимерных материалов и красителей, а также использование красителей, что осуществляется в лакокрасочном цехе локомотивного депо ст. Перерва. Учитывая современные требования к газовым выбросам, необходимо проводить тонкую очистку газов от этих компонентов. Указанные газовые выбросы имеют, как правило, малый избыточный напор, что исключает возможность применения аппаратов с большим гидравлическим сопротивлением.

В связи с этим для очистки больших объемов газовых выбросов с малым остаточным напором целесообразно использовать аппараты вихревого типа вихревые камеры (рис. 3.1 )

Принцип работы вихревого орошаемого аппарата заключается в том, что подлежащий очистке газ, проходя через тангенциальный лопаточный завихритель 2, приобретает вращательное (вихревое) движение. Параллельно с вводом газа, через патрубки, расположенные в верхней крышке корпуса 1, поступает жидкость. Далее жидкость дробится газовым потоком на капли, вовлекаемые газом в совместное вращательное движение, и образуется высокодисперсный вращающийся капельный слой. Отвод жидкости из вихревого аппарата осуществляется совместно с газом через центральный патрубок, а ее окончательное отделение от газа происходит в узле сепарации.

Возможность вихревой камеры достаточно продолжительное время удерживать жидкость в зоне контакта, низкое гидравлическое сопротивление, а также большая пропускная способность аппарата являются существенными отличиями вихревой камеры от традиционных массообменных аппаратов других типов. Эти достоинства позволяют рекомендовать аппарат для очистки газовых выбросов от паров легколетучих водорастворимых органических растворителей.

Процесс очистки предполагает использование физической сорбции паров органических растворителей с последующей их рекуперации и возвращением в технологический цикл ( рис.3.2 ).

Газовые выбросы, проходя через вихревую камеру 1, очищаются от органических растворителей. В узле сепарации 2 происходит разделение жидкой и газовой фаз. Насыщенный абсорбент из узла сепарации насосом 3 подается в ректификационную колонну 5 через подогреватель 4. В ректификационной колонне 5 происходит разделение смеси воды и легколетучих органических растворителей. Часть воды поступает в кипятильник 8, где испаряется и возвращается в ректификационную колонну 5, а часть охлаждается в холодильнике 7 и подается в вихревую камеру как свежий абсорбент. Сконденсировавшиеся в конденсаторе 6 пары органических растворителей могут быть возвращены в технологический процесс.

Замкнутый цикл дает возможность существенно снизить расход абсорбента и практически полностью исключить его сброс в систему очистки стоков промышленного предприятия.

Производительность установки от 500 м3¤ч и выше, расход воды от 0,1 до 0,6 м3¤ч, температура системы воздух – водаоколо 200С.

Испытания показали, что при производительности 1000 м3¤ч степень очистки Е = 95 – 98%.


Рис 3.1Схема установки очистки и рекупирациигазовых выбросов от легколетучих органических растворителей.

1-вихревая камера

2-узел сепарации

3-насос

4- подогреватель

5-рефтикационная колона

6-конденсатор

7-холодильник

8-кипятильник

Рисунок 3.1    Вихревая камера

1 – корпус

2- тангенциальный лопаточный завихритель


4.ОЦЕНКА УЩЕРБА ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЕ ОТ ПРОИЗВОДСТВЕННОЙ ДЕЯТЕЛЬНОСТИ

4.1 Природоохранные мероприятия и их эффективность

Снижение уровня отрицательного воздействия хозяйственной деятельности предприятия на окружающую природную среду, ее комплексы, экосистемы и людей достигается внедрением природоохранных мероприятий.

Природоохранные мероприятия должны быть направлены на улучшение состояния окружающей среды или создание условий для этого. Отнесение мероприятий к природоохранным производится по следующим критериям: повышение экологичности выпускаемой продукции; сокращение потребления природных ресурсов; уменьшение загрязнения природных комплексов выбросами, стоками, отходами; снижение концентрации вредных веществ в выбросах, стоках, отходах; улучшение состояния среды обитания людей.

Мероприятиями по охране атмосферного воздуха считаются создание газоулавливающих установок; внедрение устройств по дожигу и очистке газов от котельных, создание приборов и устройств для контроля загрязнения атмосферного воздуха.

Текущими природоохранными работами считаются управление природоохранной деятельностью, содержание в исправном состоянии очистных сооружений и устройств, захоронение отходов.

В локомотивном депо «Перерва» Московской ж/д. в качестве природоохранного мероприятия планируется внедрение установки по очистке воздуха , от легколетучих растворителей в лакокрасочном цехе, что позволит сократитьколичество выбрасываемого уайт-спирита до1,100т/год ,кроме тогополе сепарации , установка будет возвращать до 45% (от очищеногоуайт-спирита) , обратно в технологический процесс.

Проведем простой экономически расчет

Фактический выброс уайт-спиритасоставляет (Мi)=10.8т/г.

степень очистки уайт-спирита после внедрения установки ( Е)=90%

отсюда                          

Мio=10.8*0.9=9.72т/г.

          где Мio – количество загрязняющего вещества извлеченного после очисткив т/ год

Экономические результаты — сокращение ущерба, наносимого природе, экономия расхода природных ресурсов, уменьшение загрязнения окружающей среды.

В результате внедрения установки по очистке воздуха от легколетучих растворителей, удалось сократить расход уайт-спирита на 9,720т/год. В процессе сепарации 45% приходится на всякого рода взвеси ,так ,чтофактическое содержание Уайт-спиритасоставит  4370 т... оптовая цена Уайт-спирита на рынке услуг составляет 20 руб./л. Рассчитаем величину реального дохода предприятия:

Д = 0.45*9,720 * 20 р = 87 тыс. руб

Таким образом, внедрениеметода очистки , позволилополучить дополнительный доход 87 тыс. руб.

К экономическим результатам можно также отнести сокращение платежей за выбросы вредных веществ.

На предприятии локомотивного депо »Перерва» используется уайт-спирит .Норматив платы за выброс уайт-спирита - 2.5 руб/т в год. Рассчитаем сокращение платежей в ценах на 2003 год (Псокр).:

Псокр. =  2.5*9,720 * 12.5(9,720-8.5)*1.4*1.9  = 970 руб.

Экологические результаты — это снижение отрицательных воздействий на природу, уменьшение расхода природных ресурсов. Экологический эффект от внедрения установки по очистке воздуха от легколетучих растворителей 9,720 т./год.

Экономическая эффективность природоохранного мероприятия рассчитывается соизмерением получаемого экономического эффекта и затрат на проведение мер по снижению загрязнений.

Стоимость внедрения установки по очистке воздуха от легколетучих растворителей 100тыс.руб. Эксплуатационные расходы складываются из затрат на материалы, заработную плату обслуживающего персонала, расходов на электроэнергию, прочих расходов.

Технология по очистке воздуха от легколетучих растворителей , не предполагает использования расходных материалов. Замкнутый цикл дает возможность существенно снизить расход абсорбента (воды), и полностью исключает его попадание в систему очистки стоков предприятия. Также не   требует организации дополнительного рабочего места по обслуживанию установки очистки, поэтому расходы на материалы, заработную плату и прочие расходы в дипломном проекте не определялись.

   Расходы на электроэнергию рассчитываются по формуле:

Сэ = М*t*Ц, где:

М – номинальная мощность камеры окраски, кВт/час;

t- число часов работы оборудования, час/год;

Ц – цена кВт/ч, руб.

Сэ = 3 * 250*8 * 2,5 =150.000 тыс.руб.

Таблица 4.30 -Показатели эколого-экономической эффективности от      природоохранного мероприятия на локомотивного депо

Показатели

Обозначения

Результаты

расчета

Экономический результат, тыс. руб.

Р = Псокр + Д

(Д – приростдохода, Псокр- сокращение платежей)

970 + 87000 =

=87970

Капитальные вложения, тыс.руб.

К

100000

Эксплутационные расходы

(текущие затраты), тыс.руб./год

Сэ - расходы на электроэнергию

150000

Показатели

Обозначения

Результаты расчета

Приведенные затраты, тыс.руб./год

З = С + К*Е

(Е=0,1 коэффициент дисконтирования

25.000       

Чистый экономический эффект  мероприятия или проекта, тыс.руб./год

R = Р - З

62.970

Абсолютная эффективность мероприятия

Э =(Р – З) / К

0,62

Срок окупаемости, лет

Т = 1/Э =

= К / (Р – З)

≈ 1,5 лет

Исходя из полученных данных настоящее мероприятие по снижению выбросов окрасочного аэрозоля можно считать эффективным с экологической и экономической точки зрения, так как оно позволяет снизитьущерб от загрязнения атмосферы выбросами лакокрасочного производства, имеет положительный экономический эффект и окупается в сроки, не превышающие нормативных значений.

Заключение

Список литературы

1. Федеральный Закон «Об охране атмосферного воздуха» М, 1999.

2. Федеральный Закон «Об охране окружающей среды». М., 2002.

3. Экологическое право РФ: Сборник нормативных актов по использованию и охране природных ресурсов. - М.: Щит-М, 2003. - 463 с. - (Законы и законодательные акты).

4. СниП 23-03-2003. Защита от шума.

5. СН 2.2.4/2.1.8.562-96. Санитарные нормы. Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки. Минздрав России. М., 1997 г.

6. СниП II-12-77. Защита от шума. Госстрой СССР. 1978 г.

7. РД 32.94.97. Методика определения массы выбросов загрязняющих веществ от тепловозов в атмосферу. - М., 1998.

8. ОНД-86. Госкомгидромет. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. Л.: Гидрометеоиздат. 1987 г.

9. Перечень документов по расчету выделений (выбросов) загрязняющих веществ в атмосферный воздух, действующих в 2001-2002 годах. СПб., 2001.

10.Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час, или менее 20 Гкал в час. М., 1999.

11.Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при механической обработке металлов (на основе удельных показателей). Фирма «Интеграл». 1997.

12.Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта (расчетным методом). Минтранс РФ НИИАТ. М. 1992 г.

13.Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). М.1998.

14.Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). НИИАТ. М.1998.

15.Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выделений). Фирма «Интеграл». С.-Пб. 1997.

16.Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (на основе удельных показателей). Фирма «Интеграл». С.-Пб. 1997.

17.Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. (Дополненное и переработанное) НИИ Атмосфера. С.-Пб., 2005.

18.Методика определения предотвращенного экологического ущерба. Приказ Госкомэкологии России от 30.11.1999. Государственный комитет Российской Федерации по охране окружающей среды. - М., 1999 г.

19.Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта (расчетным методом). Минтранс РФ НИИАТ. - М. 1992.

20.Методические рекомендации о порядке составления статистической отчетности по охране окружающей среды и природопользованию на предприятиях железнодорожного транспорта. Медведева В.М., Зубрев Н.И.- М: «Маршрут», 2003.-93с.

21. Бринчук М.М. Экологическое право (право окружающей среды): Учебник для высших юриди-ческих учебных заведений. – М.:Юристъ, 1998.–688с

22. Дмитриев А.В. ,.Ежов П.В.Инженерные решения.»Очистка промышленных газовых выбросов» - .М. - 2018г.

23.Кистанова И.Ю., Грачикова Н.А. Единые требования по оформлению курсовых и дипломных проектов (работ). – М.: РГОТУПС. – 2004. – 23 с.

24. Лосев К.С., Горшков В.Г., Кондратьев К.Я. и др. ПроблемыэкологииРоссии. Russia in environmental crisis. M., 1993.

25.Лукьянчиков Н.Н., Потравный И.М. Экономика и организация природопользования. М.: Тройка, 2000 г.

26.Обращение с опасными отходами: Учебное пособие/ Под редакцией В.М.Гарина и Г.Н.Соколовой.-М.:ТК Велби, Изд-во Проспект,2005.-224с.

27.Охрана окружающей среды и экологическая безопасность на железнодорожном транспорте: Учебное пособие/ Под ред. Н.И. Зубрева, Н.А. Шарповой. - М.: УМК МПС России, 1999. - 592 с

28.Юдин Е.Я. Борьба с шумом. Справочник - М.: Машиностроение, 1985.