Сдавался/использовался | Апрель/2009г. |
Примечание | от редактора: автор не назвал себя, город и учебное заведение; показан фрагмент текста; презентация реферата находится в архивном файле |
Загрузить архив: | |
Файл: ref-29984.zip (621kb [zip], Скачиваний: 343) скачать |
Что такое симметрия ?
lГреческое слово «симметрия» означает «соразмерность», «пропорциональность», «одинаковость в расположении частей». Однако часто под словом «симметрия» понимают более широкое понятие: регулярность смены каких-либо явлений (времен года, дня и ночи и т.д.), уравновешенность левого и правого, равноправие природных явлений. Фактически мы имеем дело с симметрией везде, где наблюдается какая-либо упорядоченность.
lВид симметрии в математике
lДревнегреческий философ Платон придавал особое значение правильным многогранникам, считая их олицетворением четырёх природных стихий: огонь-тетраэдр (вершина всегда обращена вверх), земля-куб (наиболее устойчивое тело), воздух-октаэдр, вода-икосаэдр (наиболее «катучее» тело). Додекаэдр представлялся как образ всей Вселенной. Именно поэтому правильные многогранники называются также телами Платона.
lПростейшими видами пространственной симметрии являются центральная, осевая, зеркально- поворотнаяи симметрия переноса.
Примеры центральной симметрии.
lПростейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм.
lЦентром симметрии окружности является центр окружности, а центром симметрии параллелограмма - точка пересечения его диагоналей.
lПрямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии(точка О на рисунке) у прямой их бесконечно много - любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является треугольник.
Поворотная симметрия.
lПредположим, что объект совмещается сам с собой при повороте вокруг некоторой оси на угол, равный 360°/n (или кратный этой величине), где n= 2, 3, 4, … В этом случае о поворотной симметрии, а указанную ось называют поворотной осью n-го порядка. Рассмотрим примеры со всеми известными буквами «И» и «Ф». Что касается буквы «И», то у нее есть так называемая поворотная симметрия. Если повернуть букву «И» на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой. Иными словами, буква «И» симметрична относительно поворота на 180°. Заметим, что поворотной симметрией обладает также буква «Ф».