Математика

Загрузить архив:
Файл: 025-0026.zip (12kb [zip], Скачиваний: 96) скачать

Многочленом (полиномом) от матрицы А наз. Выр-е вида: р(А)=а А +а А +… а А²+а А+а А

Пусть дан многочлен р(Х), если р(А)=0, т.е. р(А) – нулевая, то М. А наз. корнем многочдена р(Х), а многочлен р(Х) аннулирующим многочленом от матрицы А.

Правило Сариуса знаков для 3-его порядка.

Минором наз. определитель, полученый вычёркиванием той строки и того столбца на которых стоит данный элемент.

Алг. дополнением эл. Аikназ. минор, взятый со знаком Аik=(-1)   Mik.

Разложение ∆ 3-его порядка по элементам первой строки : ∆=а11А11+а12А12+а13А13 .

Матрицей обратной кв. матрице А наз. кв. матрица А¯¹ удовл. рав. А А¯¹= А¯¹ А=Е.

Кв. матрица наз. невыражденой, если её det≠0.

Теор. Всяк. невыражд. матр. А имеет невыражд. ей обр. матр.: А¯¹=A/detA.

Произвольную невыражд. матр. можно привести к еденичной (А"Е) - метод Жордано.

Нахождение обр. матр. с помащю эл. преобр. Теор. Если к ед. матрице порядка n применить те же эл. преобр.,только над строками и в том же порядке с пом. котор. невыражд. кв. матр. А приводится к ед., то полученная при этом матрица будет обратной матрице А. (А|E)"(E|A¯¹).

Ах=В    уА=В

х=А¯¹В    у=ВА¯¹

Ранг матрицы

В матр. m*n выберем произв. S-строк, S-столб. (1≤S≤min(m,n)). Элем., стоящ. на пересечен. выбр. стр. столб. обр. матр. порядка S. Определитель этой матрицы наз. минорм порядка S матр А.

Этот определитель наз.минорм второго порядка исходн. матр. Аналог. получ. др. миноры втор. порь.,а также трет. порь., нек. из них мог. = 0.

Рангом матр. наз. наиб. из порядков её миноров,≠0.

Если все миноры =0, то ранг =0.

Свойства ранга

1. R транспонир. матр. = R исходн.

2. R М. не завис. От отсутствия или присутствия в ней нулевых строк.

3. При эл. преобр. R матр. не мен. С их пом. матр. можно привести к квазитреуголной форме,R котор. = r, т.к. её минор с гл. диог. равен произведен. и ≠0, а все миноры более высокого порядка =0, как содержащие нулевые строки.

Матричная запись линейной ситемы

А=(Кооф.), Х=(неизв.), В=(св. чл.), Ấ=(кооф и св. члены)

Невыражд. сист.

                        |a11a12.. b1  ..a1m|

∆=|кооф.| , ∆k=| a21  a22 .. b2..a2m|

                        |………………………………..|

                        | am1 am2 .. bm ..amm|

Теорема Крамера. Невыражн. лин. сит. имеет ед. решение х1=∆1/∆ , х2=∆2/∆………

Метод Гаусса-Жордано (и наобарот)

Заключ. в эл. преобраз. матр.

ВЕКТОЫ

Коллинеарн. вект. – лежащ. на || прямых или на одой прямой.

Равные вект. – коллин. и имеющ. одинак. направление и длину.

Протиположными наз. векторы ­¯ и имеющие равные длины.

Св. векторы – т. приложения котрых может быть выбрана произвольно.

Радиус-вектором т. наз. вектор т. приложения которого является нач. коорд., а конец находится в т.

Направляющими косинусами векторов наз. косинусы углов α, β, γ образованных ими с коорд. осями.

|r|=√(x²+y²+z²)   x=|r|cosα   y=|r|cosβ   …  …=> cosα=x/√( x²+y²+z²)

Единичный векторe=(cosa,cosb,cosγ)

Коорд. лин. комбинации векторов

Даны n векторов. Лин. комб. a=α1*a1+α2*a2+…+αn*an     x= α1*x1+α2*x2+…+αn*xn y=…

Деление отрезка в данном отношении

X=(x1+ℓx2)/(1+ℓ) – в отношении ℓ.

Скалярн. произведение векторов

ab=|a||b|cos(ab)        Т.к. |b|cos φ=прa b , |a|cosφ=пр b a , ab=|a|пр a b = |b|прb a

Свойства:               1.Переместит(коммуникативности) аb=ba

                              2.Сочетательности(ассоциативности) относительно числ. множ. (αa)b=α(ab)

                             3.Распределительности (дистрибутивности) относит. суммы векторов   a(b+c)=ab+ac

Правило лев. и прав. тройки В.

3 не комплан. вект. a,b,c взятых взятых в указанном порядке и приложенных к одной точке наз. тройкой векторов abc.

Будем см. с конца c на плоск. образ. вект.а и b ,если кратчайший поворот от а к b совершим против часовой стрелки то тройка наз. правой…

Векторным произведением 2-х векторов a и b наз. вектор [a*b] и удовл. след. усл.:1)|[a*b]|=|a||b|sinα ;2)[a*b]┴a и b;3)тройка a b [a*b] имеет ту же ориентацию,что и i jk.

Изусл. 1) следует что || векторное произведение = площади параллелограмма.

[a*b]=0 < = > a комплан. b

Свойства:               1.Антиперестановочности     [a*b]=-[a*b]

                              2.Сочетательности относительно скалярн. множ.     [(αa)*b]=α[a*b]

                              3.Распределительности (дистрибутивности) относит. суммы векторов   [(a+b)c]=[a*c]+[b*c]

          |i   j    k|

[a*b]=|x1 y1 z1|=|y1 z1|*i+… …

          |x2 y2 z2||y2 z2|

Смешанное произведение векторов

Даны 3 вект. a,b,c . Умножим векторно a на b и скалярно на с. В рез. получ. число, котор наз. векторно-скалярным произведением или смешаным.

Vпараллелипипеда=смеш. произвед. вект. и «+», если тр. abc прав.

abc=[ab]c=a[bc]

       |x1 y1 …|

abc=|x2 … …|   < = > abc-комплан.

       |x3 … …|                          |x2-x1 y2-y1 … |

V 3-ох угольн. Пирамиды=mod|x3-x1   …    … |

                                              |x4-x1   …    … |

Линейная завис. Векторов

a1,a2,…an – наз. лин. завис. векторов, если сущ. α1,α2 …αn, таких что: α1*a1+α2*a2+…+αn*an=0

Теорема 1. a1,a2,…,an, n>1 лин зависима < = > по меньшей мере, один из них явл. лин. комб. остальных.

Теорема 2. аи b лин. завис < = > они коллин.

Теорема 3. Если е1 и е2 – не колинеарные векторы нек. плоск., то любой третий вектор а, принадлежащий той же плоскости ед. образом раскл. по ним а=х*е1+у*е2.

Теорема 4.a,b,c – лин. завис. < = > они коллинеарны.

Теорема 5. Если е1,е2,е3 не комплан., то любой любой а можно ед. обр. разложить по ним а=α1*е1+α2*е2+α3*е3

Теорема 6. Всяк. 4-е вектора лин. завис.

Базис – любая упорядоченая система 3-ох лин. независ.,т.е. не компланарных векторовd=x*e1+y*e2+z*e3   d(x,y,z) в базисе е1е2е3

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ…

F(x,y)=0 – ур-е линии в общем виде

F(ρ,φ)=0 – … в полярных координатах. Если это уравнение разрешимо относительно ρ, тоρ= ρ(φ).

x=f(t)         

y= φ (t)       / - параметрические уравнения линии.

Если дан. линии заданы ур-ем ρ= ρ(φ), параметрически ур-я записываются   x= ρ(φ)*cos φ   y= ρ(φ)*sin φ

Упрощ. ур-е второй степени не содержащее члена с произведением координатAx²+Cy²+Dx+Ey+F=0     (1)

Перейдём к нов. сист. коорд. оху путём параллельного переноса.

Ур-е (1) путём выделения полных квадратов преведено к одному из следующих канонических уравнений:

х²/a²+y²/b²=1 – эллипс – геом. место точек плоскости, для котор. сумма раст. до двух данных т. (фокусов) =const,F1(-c,0), F2(c,0),c=√(a²+b²)

                                         Эпсиктриситетом эл. наз. ξ=√(1-(b/a)²)     Директрисами эл. наз. прямые x=a/ξ и x=--a/ξ

х²/a²+y²/b²=0 – удовл. коорд. ед. т. (0,0)

х²/a²+y²/b²=-1 – неудовл. коорд. ни однойт.

в сл. А*С>0 линии элипсического типа

х²/a² -- y²/b²=1 или  --х²/a² + y²/b²=1 – гиперболы – геом. место т. плоскости для которых || разности расстояний до двух данных т.(фокусов)=const

                                                             F1(-c,0), F2(c,0), c=√(a²+b²), ξ=c/a, Ассимптоты : у=х*b/a и y=-- х*b/a , Директрисы : x=-a/ξи x=a/ξ                 |

                                                           Равносторонние Г. – с равными полуосями.                                                                                             /              

х²/a² -- y²/b²=0 – пара пересекающихся прямых                                                                                                                                      / - линии гиперболического типа

у²=2px – парабола - геом. место т. плоскостиравноудалённых от фокуса и директрисы

              Симметрин. относит. ох : у²=2px , Директриса x=-p/2 ,F(p/2,0) , r=x+p/2           |

                                              oy : x²=2qy , Директриса y=-q/2 ,F(0,q/2) , r=y+q/2           |

y²=b² - пара || прямых                                                                                                    > - линии параболического типа

y²=0 – пара совпавших прямых                                                                                       /

y²=--b² - неудовл. коорд. ни однойт.

Если С=0, А≠0, то (1) приводится х²=2qy

Прямая на плоскости. Общий вид: х=а или y=b

k=(y2-y1)/(x2-x1) , где х1,у1,…,… -координаты двух любых т. плоскости.      |         tg(угла м/у 2-я ∩ прямыми)=(k2-k1)/(1+k1k2)

Уравнение касательной: y-y0=k(x-x0)                                                         |         Если прямые заданы общими уравнениями (Ах+Ву+С=0):

Ур-е нормали : y-y0=-1/k*(x-x0)                                                                  |          tg(угла м/у 2-я ∩ прямыми)=(A1*B2-A2*B1)/(A1*A2+B1*B2)

Ур-е прямой    (y-y1)/(y2-y1)=(x-x1)/(x2-x1), (x2≠x1,y2≠y1)                        ||| < = >A1/A2=B1/B2,   ┴ A1/B1=--B2/A2

Ур-е прямой в отрезках   x=x1+(x2—x1)*t   y=y1=(y2—y1)*t, t € R

Расстояние от т. М0(х0,у0) до прямой Ах+Ву+С=0 : d=(A*x0+B*y0+C)/√(A²+B²)

Ур-е окружности : (x-a)²+(y-b)²=R²

Упрощ. общее ур-е второй степени: Ax²+2Bxy+Cy²+Dx+Ey+F=0

   При повароте коорд осей на α для которого ctg2α=(A— C)/2B

                                                    x=x’ cos α –y’ sin α

                                                    y=x’ sin α +x’ cos α

Предел ф-ии. Постоянная b наз. lim y=f(x) при x→a , если для любого ξ>0 сущ. δ>0, что при всех x удовл. усл. 0<|x-a|< δ, выполняется условие |f(x)-b|<ξ