СПОСОБ ОПРЕДЕЛЕНИЯ ЖИВУЧЕСТИ.
Определению живучести связи (вероятности связности) между двумя конкретными узлами сети i и j посвящен целый ряд работ [1-5]. Однако расчет точного ее назначения сопряжен с большими вычислительными трудностями. Представляет интерес найти простой способ определения вероятности связности сети, который позволял бы оперативно и вручную проводить на стадии проектирования оценку различных вариантов их построения.
Рассмотрим
сеть той же мостиковой структуры, что и в [1] (рис.1). Для простоты будем
полагать вероятности исправного функционирования всех ребер сети одинаковыми и
равными р , а неисправного
функционирования - равными q=1-p. Для
оценки живучести воспользуемся методом прямого перебора состояний элементов
сети связи [5]. На основании биноминального закона вероятность пребывания сети
связи в состоянии, когда i любых ребер сети отказали,
биноминальный коэффициент; N – число ребер сети.
Например, для сети, изображенной на рис. 1, живучесть связи р13 зависит от следующей
| 
     2  | 
   
| 
      1  | 
    
| 
      3  | 
    
| 
      4 Рис № 1.  | 
    
совокупности независимых событий: исправного
состояния сети в целом – вероятность этого события равнар3;
повреждения любого одного ребра сети – вероятность 
одновременного повреждения
любых двух ребер сети, за исключением двух случаев, когда оба ребра подходят к
узлу 1 или к узлу 3 – вероятность
одновременного
повреждения трех ребер сети, подходящих к узлу 2 или 4 – вероятность 2р2q3.
Суммируя все вероятности независимых событий, получаем искомое выражение :

что полностью совпадает полученными результатами в [1].
Аналагично для всех остальных пар узлов сети рис. № 1.


Из анализа видно, что

Связанной сетью являются сеть, в которой любой из узлов соединен с остальными узлами сети. Вероятность связанности сети рис. № 1

так как эта сеть допускает все одиночные повреждения ребер и восемь двойных повреждений ребер. Вероятность связности сети меньше или равна живучести связи между любой парой узлов сети, в данном случае рс<р13.
С точки зрения характеристики сети интерес представляют вероятность рс, минимальная рмин и максимальная рмакс живучести связи между любой парой узлов сети и соотношения между ними. Для сети рис №1: рс< рмин=р13< р12=р14=р23=р34< р24 =рмакс.
Аналогично можно найти выражения для вероятности связности полносвязных сетей. Для сети с тремя вершинами (n=3)
                       (1)
для n=4;
      (2)
для n=5;
         (3)
для n=6;
    (4)
Для рс при n=7….10 расчетные формулы не приводятся из-за громоздкости.
Вероятность связности для кольцевых сетей связи, т.е. сетей, у которых степень для каждой вершины равна 2 (степенью вершины d называются число граней графа сети, инцидентных данной вершине [6]),

На рис 2 определена зависимость рс от р для кольцевых сетей при различных n. Из ее анализа видно, что вероятность связности кольцевых сетейпадает с увеличением числа узлов сети при одних и тех же значениях р.
| 
      n=3  | 
    
| 
      4  | 
    
| 
      5  | 
    
| 
      7  | 
    
| 
      10  | 
    
| 
      p  | 
    
| 
      00,2 0,4 0,6 0,8  | 
    
| 
      1 0,8 0,6 0,4 0,2  | 
    
| 
      рс  | 
    
![]()  | 
 
Рис № 2.
| 
       а) б) в) Рис3  | 
     
| 
      а) б) в) Рис4  | 
    
![]()  | 
 
На практике довольно редко встречаются полносвязные сети. Обычно бывают сети с небольшимистепенями вершин. Имеется большое семейство графов (так называемых равнопрочных) , в которых степень вершины d, число вершин n и общее число граней m связаны следующим соотношением: d=2m/n (при n>2).
Например для шестиугольника (n=6) без резервирования связей можно построить четыре различных графа с d=2, 3, 4, 5. Вероятности связности этих графов определяется следующими выражениями:
При d=2 (рис. 3,а)
                         
(5)
при d=3(рис. 3,б)
   (6)
при d=4 (рис. 3,в)
    (7)
При n=8 можно построить шесть различных графов с d=2…..7; вероятность связностиэтих графов определится следующими выражениями:
d=2 (рис. 4,а)
                       (8)
d=3 (рис. 4,б)
     (9)
d=4 (рис. 4,в)
(10)
| 
      d=2  | 
    
| 
      3  | 
    
| 
      4  | 
    
| 
      5  | 
    
| 
      p  | 
    
| 
      00,2 0,4 0,6 0,8 1  | 
    
| 
      1 0,8 0,6 0,4 0,2  | 
    
| 
      рс  | 
    
| 
      Рис. 5  | 
    
| 
     p  | 
   
| 
      d=2  | 
    
| 
      3  | 
    
| 
      4  | 
    
| 
      5  | 
    
| 
      00,2 0,4 0,6 0,8 1  | 
    
| 
      1 0,8 0,6 0,4 0,2  | 
    
| 
      рс  | 
    
| 
      Рис. 6  | 
    
| 
      6  | 
    
| 
      7  | 
    
![]()  | 
  ![]()  | 
 
Расчетные формулы для рс при d=5 и 6 из-за громоздкости не приводятся.
На рис 5 и 6 представлены зависимости вероятности связности сети с n=6, 8 соответственно при различных d (сплошные линии), построенные по формулам (5) – (10). Из рисунков видно, что увеличение вероятности связности сети с увеличением d при неизменном p объясняется тем , что с увеличением d возрастает разветвленность сети связи.
К сожалению, ловольно трудно получить аналитическое выражение для вероятности связности сети рассматренного семейство графов при различных d и n, за исключением полносвязных сетей сd = n – 1 [см.выражение (1) – (4)]. По этому целесобразно определять верхнюю груницу вероятности связности графов. Если граф связный, то в нем не может быть изолированных вершин. В этом случае каждой вершине должна быть инцидента по крайней мере одна ветвь.
Пусть Ai – событие, когда не существует неповрежденных ветвей, инцидентных вершине i, p(Ai) – вероятность этого события; 1 – p(Ai) – вероятность дополнительного события, когда существует по крайней мере одна целая ветвь, инцидентная вершине i, Поэтому вероятность того, что у всех вершин есть по крайне мере одна целая ветвь, т.е. есть связана,ограничена неравенством:
                   (11)
На рис. 5,6 представлены зависимости (11) для n=6, и d=2…..7 (штриховые линии). Сравнение кривых показывает, что верхнюю границу вероятности связности сети, особенно при больших d.
Таким образом, полученная простая верхняя оценка вероятности связности равнопрочных сетей связи дает шорошее приближение к точному значению вероятности связности сети при больших значениях d.