Примечание | Получен от Dima Matsnev |
Загрузить архив: | |
Файл: 240-0995.zip (229kb [zip], Скачиваний: 50) скачать |
МИНИСТЕРСТВО СВЯЗИ РОССИЙСКОЙ ФЕДЕРАЦИИ
МОСКОВСКИЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ СВЯЗИ И ИНФОРМАТИКИ
Кафедра ВТ и УС
Методические пособие по КП
(Курс "Эксплуатация средств ВТ")
Составитель Летник Л.А.
Москва 1996г.
Методическое пособие состоит из 5 разделов.
1.Математические модели.
2.Расчёт надёжности внешнего устройства.
3.Осуществлениеить распределения задач между ЭВМ, обеспечивающее оптимальную нагрузку ЭВМ, входящих в состав ВЦ.
4.Разработка модели для эмитации производственной деятельности ВЦ при планово-предупредительномобслуживании эксплуатируемого парка ЭВМ. По полученной модели оценивается распределение сдучайной переменной "число машин, находящихся на внеплановом ремонте".
5.Минимизация стоимости эксплуатационных расходов ВЦ средней производительности.
Надо взять материал из файла kurspr1 и kurspr2, которые касается моделей. и дополнить его из книги Б.М. Коган и др. " Основы эксплуата- ции ЭВМ", стр. 29-47.
Модели отказов и сбоев ( стр.29) и далее:
Модели потоков восстановления ( стр.33)
Модель профилактических испытаний ( стр.37)
Модели ЗИП ( стр.42)
В КП должен войти конспект из файла kurspr1 и kurspr2, и из книги Коган и др. " Основы эксплуатации ЭВМ"стр. 29-47.
Рассмотрим второй вопрос: "Рассчитатьнадёжность ВУ".
В состав ВУ могутвходить следующие устройства.
1.D-триггер с обратной связью и динамическим управлением.
2.Схема синхронного цифрового автомата.
3.Асинхронная последовательная сема.
4.Цифровой автомат на мультиплексоре.
5.Цифровой автомат на мультиплексоре.
6.Цифровой автомат для формирования заданной последовательности.
7.Цифровая схема с дешифратором.
8.Схема для подсчёта суммы по модулю 16.
9.Схема реализующая транспонирование прямоугольной матрицы.
10.Цифровое устройство для обработки информации.
11.Цифровая схема с запоминающим устройством.
12.Блок обработки с микропрограммным управлением.
Все схемы приведены ниже и ещё в файле cxfile1.txt
Номера схем для каждого варианта приводятся в файле temаkpr1.txt
КОМПЛЕКТ СХЕМ ДЛЯ ВНЕШНЕГО УСТРОЙСТВА.
1.D-триггер с обратной связью и динамическим управлением.
2.Схема синхронного цифрового автомата.
3.Последовательностная схема,котораяс приходом стартового сигнала А=1 под действием синхроимпульсов СИ принимаетпоследовательно состояния: 000-исходное состояние, 001, 100, 101, 100, 010, 011, 000...
4.Aсинхронная последовательностная схема ,кoтopaя пoд дeйcтвиeм cигнaлoв, пocтупaющиxнa вxoдX(X), пpинимaeт пocлeдoвaтeльнo кoдoвыe cocтoяния ABC: 000, 001, 011, 111, 101, 100, 000.
5.Схема содержит цифровой автомат на мультиплексоре 1 с циклической последовательностью состояний АВ=(00,01,11,10)и комбинационную логику на мультиплексоре 2, выходные сигналы которой зависят от состояний автомата и тактовых сигналов на входе 3
6.Схема, однократновырабатывающая последоватеьлность сигналов 010011000111000011110000011111 в виде импульсов (выход 24) или потенциалов (выход 22). Сигнал начальной установки поступает на вход2, синхроимпульсы - на вход 1.
7.Схема, которая на одном их выходов дешифратора вырабатывает непрерывную серию импульсов.Номер выхода и число импульсовв серии зависят от числа "1" на входах 1,2,3,4.
8.Схема, подсчитывающая суммуS= p(i)*c(i)*Xпоmod 16.
X-сигнал на входе ..,
p(i)-весовой коэффициент i-го синхроимпульса на входе ...
Веса p(1-4)=1, p(5-8)=2, p(9- 12)=4, p(13-16)=8
9.Схема, выполняющая транспонирование квадратной матрицы 4*4 однобитовых элементов. Исходнаяматрица размещенавячейках 0,1,2,3 RAM-1. Транспонированная матрица размещается в RAM-2.
10.Сxeмa цифpoвoгo уcтpoйcтвa для oбpaбoтки N 3-paзpядныx кoдoв, oтличныx oт 0 и нe paвныx мeжду coбoй, пocлeдoвaтeльнo пocтупaющиx нa А-входы.
Aлгopитмoм oбpaбoтки пpeдуcмoтpeнo: фикcaция A(1) в peгиcтpe; cpaвнeниe A(i) c A(1); зaпиcь инверсного кода A(i+1) в ячeйку ЗУ пo aдpecу A(i+1),еслиA(i)>A(1); пocлeдoвaтeльный вывoд coдepжимoгo ячeeк ЗУ нa выходы B пocлe пpиeмa A-кoдoв. (i=2,3...N-1)
11.Данные, хранимые вячейках ЗУ, представляют положительные и отрицательные числа в дополнительном коде с одним знаковым разрядом. Схема уменьшаетсодержимоеячеек 1,2,...8, начиная с ячейки 1, на величину разности /S[i]-S[i-1]/, где S[i],S[i-1]- количество "1"соответственнов текущем и предшествующем адресном коде при условии,если его можно представить в 4-разрядной сетке (без переполнения), (i-1),i-последовательные номера ячеек
12.Схема блока обработки данных с микропрограммным управлением.
Так как общаяструктурнаясхема, состоящая из несколких отдельных, не приводится, то необходимо подсчитать число МИС,СИС и БИС, входящих в Ваше задание.После этого,используя табл.1. олределить общее число элементов заданной схемы. Будем считать, что к МИС относятся интегральные схемы (ИС) с числом выводов равным 16, к СИС с числом выходов - 24, а все остальные относятся к БИС.
Таблица 1.
ТипИС |
Число резисторов |
Число конденсаторов электролит |
Число конденсаторов керамичес. |
Число светодиодов |
Число разъёмов |
СИС |
5 |
3 |
15 |
1 |
1 |
МИС |
15 |
5 |
25 |
2 |
2 |
БИС |
25 |
10 |
40 |
3 |
4 |
Число паяных соединений определяется как общее числовыводов ИС, выводов резисторов, конденсаторов, светодиодов и число контактов разъёмов умноженное на два.
Расчёт надежности ВУ
При расчёте надежности принимаются следующие допущения:
-отказы элементов являются независимыми и случайными событиями;
-учитываются только элементы, входящие в задание;
-вероятность безотказнойработы подчиняетсяэкспоненциальному закону распределения;
-условия эксплуатации элементов учитываются приблизительно с помощью коэффициентов;
-учитываются катастрофические отказы.
В соответствиис принятыми допущениями в расчётную схему должны входить следующие элементы:
-элемент К1, т.е. количество СИС и БИС;
-элемент К2, т.е. количество ИС малой степени интеграции (МИС);
-элемент К3, т.е. количество резисторов;
-элемент К4, т.е. количество конденсаторов:
-элемент К5, т.е. количество светодиодов;
-элемент К6 т.е. количество поеных соединений;
-элемент К7, т.е. количество разъёмов.
В соответствии с расчётной схемой вероятность безотказнойработы системы определяется как:
где N- количество таких элементов, используемых в задании
Pi -вероятность безотказной работы i-го элемента.
Учитывая экспоненциальный закон отказов, имеем:
где ni - количество элементов одного типа, lj-интенсивность отказов элементов j-го типа.Причём lj=kl x lj0,где kl - коэффициент, учитывающий условия эксплуатации, а lj0 - интенсивность отказов в лабораторных условиях.
Суммарная интенсивность отказов элементов одного типа составит
Исходя из условий эксплуатации принимаем kl=1.Никакихдополнительных поправочных коэффициентов вводится не будет,так как все элементы системы работают в нормальных условиях, предусмотренных в ТУ на данные элементы.
Для элементов.используемых для построения ВУ, приняты следующие интенсивности отказов
Микросхемы с 14 выводами l1=4.5x10-7
Микросхемы с 16 выводами l2=4.0x10-7
Микросхемы с 48 выводами l3=3.2x10-7
Резисторы l4=1.0x10-5
Конденсаторы электролитические l5=0.1x10-5
Конденсаторы керамические l6=0.04x10-5
Светодиоды l7=0.26x10-5
Паяные соединения l8=1.0x10-7
Разъёмы с 48 выводами l9=0.2x10-5
Исходя из этих значений можно подсчитать суммарную интенсивность отказов всех элементов одного типа, а затем и для всех элементов ВУ.
Вероятность безотказной работы ВУ заТ=1000 часов
Среднее время наработки на отказ
Тм = 1/lЕобщ
Рассмотрим пример
Пусть схема ВУ включает в свой состав следующие элементы:
МИС с 14 выводами - 20Конденсаторы электролитические -3
СИС с 16 выводами- 16 Конденсаторы керамические -40
БИС с 14 выводами - 48 Паяные соединения -821
Разъёмы -1
Тогда lЕобщ.=4.5*10-7*20+4.0*10-7*16+3.2*10-7*3+1.0*10-5*5+
0.1*10-5*3+0.04*10-5*40+1.0*10-7*821+0.2*10-5*1
=1649.6*10-7
Так как ВУ не имеет резервных элементов,и выход из строя любого из элементов повлечёт за собой отказ всего устройства, то среднее время наработки на отказ определится как
Тм = 1/1694,6*10-7 = 5902 час.
Тогда вероятность безотказной работы за восьмичасовую сменусоставляет:
За время Т=1000 часов, вероятность составляет 0,8441
Рассмотрим третийвопрос:"Осуществить распределение задач между ЭВМ, обеспечивающее оптимальную нагрузку.
Материал взять из описания "Модель".
!!!!!!!!!!!!!!!!!!!!!!!
Рассматриваемый ВЦ имеет в своем составе парк ЭВМ , обеспечивающий среднюю производительность. ибазирующийся на ЭВМ IBM PC с ЦПтипа 386SX и 386DX. Кроме: этого на ВЦ используются в качестве сетевых серверов машины типа 486DXи Pentium, поддерживающие локальные сети, в которых осуществляетсясложная цифроваяобработка больших цифровых массивов информации ,кроме этого,решаются задачиразработки цветных изображений.
На ВЦ принято планово-профилактическое обслуживание. ВЦ с небольшим парком ЭВМ и поэтому ремонтом ЭВМ занимается всего один радио-механик ( в терминах СМО - ремонтник).Это означает:чтоодновременно можно выполнять обслуживание только одной ЭВМ. Все ЭВМ должны регулярно проходить профилактический осмотра.Число эвм подвергающеесяежедневному осмотру согласно графика, распределено равнлмерно и составляет от 2 до 6. Время,необходимое для осмотра и обслуживания каждойЭВМ примерно распределено в интервале от 1,5 до 2,5 ч. За это время необходимо проверить саму ЗВМ,а также такие внешниеус-вакак цветные струйные принтеры, нуждающиеся в смене или заправке катриджей красителем. Несколько ЭВМ имеют в качестве внешних устройств цветные плоттеры (графопостроители) , у которых достаточно сложный профилактический осмотр.
Рабочий день ремонтника длится 8 ч,но возможна и многосменная работа.
В некоторых случаяхпрофилактическийосмотр прерывается для устранения внезапных отказов сетевых серверов, работающих в три смены, т.е 24 ч в сутки. В этом случае текущая профилактическая работа прекращается, и ремонтник начинает без задержки ремонта сервера.Тем не менее, машина-сервер,нуждающаяся в ремонте,не может вытеснить другую машину-сервер, уже стоящую на внеплановом ремонте.
Распределение временимежду поступлениями машин-серверов является пуассоновским со средним интервалом равным 48 ч.Если ремонтникотсутствует вмомент поступления ЭВМ эти ЭВМ должны ожидать до 8ч утра. Время их обслуживания распределено по экспоненте со среднимзначение в 25 ч.Необходимо построить GPSS-модель для имитации производственной деятельности ВЦ. По полученной модели необходимо оценить распределение случайной переменной "число машин-серверов, находящихся на внеплановом ремонте". Выполнить прогон модели, имитирующей работу ВЦ в течении 25 дней, введяпромежуточнуюинформацию по окончании каждых пяти дней. Для упрощения можно считать, что ремонтник работает 8 ч в день без перерыва, и не учитывать выходные.Это аналогично тому, что ВЦ работает 7 дней в неделю.
Метод построения модели
Рассмотрим сегмент планового осмотра ЭВМ. (Рис.1.). Транзакты, подлежащие плановому осмотру, являются пользователями обслуживающего прибора (ремонтник), которым не разрешен его захват. Эти ЭВМ-транзакты проходят через первый сегмент модели каждый день с 8 ч утра.ЭВМ-транзакт входит в этот сегмент. После этого транзакт поступает вблок SPLIT, порождая необходимое число транзактов, представляющих собой ЭВМ, запланированные на этот день для осмотра.Эти ЭВМ-транзакты проходят затем через последовательность блоков SEIZE-ADVANCE-RELEASE и покидают модель. .
Рис.1. Первый сегмент
Сегмент "внепланового ремонта"ЭВМ-серверы, нуждающийся во внеплановом ремонте,двигаются в модель в своём собственном сегменте. Использование ими прибора имитируется простой последовательностью блоков PREEMPT-ADVANCE- RETURN.Блок PREEMPT подтверждает приоритет обслуживания ЭВМ-сервера (в блоке в поле В не требуется PR) (Рис.2.)
Сегмент "начало и окончание" рабочего дня ВЦ. Для того, чтобы организовать завершение текущего дня работы ВЦ по истечении каждого 8-ми ч дня и его начала в 8 ч утра, используется специальный сегмент. Т Транзакты-диспетчер входит в этот сегмент каждые 24 ч (начиная с конца первого рабочего дня), Этот транзакт, имеющий в моделе высший приоритет, затем немедленно поступает в PREEMPT, имеющий в поле В символа PR. Диспетчеру, таким образом,разрешено захватывать прибор-ремонтник вне зависимости от того, кем является текущий пользователь (если он есть). Далее, спустя 16 ч,диспетчер освобождает прибор-ремонтник,позволяя закончить ранее прерванную работу (при наличии таковой).(Рис.3.)
Сегмент "сбор данных для неработающих ЭВМ-серверов". Для сбора данных, позволяющихоценить распределение числа неработающих ЭВМ-приборов, используется этот отдельный сегмент. (Рис.4.)
Для этих целей используется взвешенные таблицы, которые позволяют вводить в них в один и тот же моментвремени наблюдаемыеслучайные величины. Для этих целей включаются два блока - TABULATE, но если ввод в таблицу случаен (значение величин ³2), то этот подход не годен. В этом случае используется необязательный элемент олеранд,называемый весовым фактором, обозначающий число раз, которое величина, подлежащая табулированию, должна вводится в таблицу. Это позволяет назначать разые веса различным наблюдаемым величинам.
Сегмент "промежуточная выдача". и окончание моделирования в конце дня используется последовательность GENERATE-TERMINATE (Рис.5.).
Cегменты представлены на рис.1 - 5.
Рассмотрим таблицу распределения (Табл. 3.1.
Таблица 3.1
Операторы GPSS |
Назначение |
Транзакты: |
|
1-вый сегмент |
ЭВМ, предназначенная для планового профилактического осмотра |
2-рой сегмент |
ЭВМ-сервер, нуждающаяся во внеплановом ремонте |
3-тий сегмент |
Диспетчер, открывающий в 8 ч утра ВЦ изакрывающий его через 8 ч |
4-тый сегмент |
Наблюдатель, следящий за содержимым очереди для оценки распределения числа неисправных ЭВМ-серверов: Р1 - параметр, в который заносятся отметки времени Р2 - параметр, в который заносится дли- |
5-тый сегмент |
Транзакт, обеспечивающий промежуточнуювыдачу результатов |
Приборы: |
|
BAY R |
Ремонтник |
Функции: |
|
JQBS |
Описывает равномерное распределениеот 1 до 3; получаемую величину можно интерпретировать как число, на 1 меньшее числа ЭВМ, прибывающих ежедневно на плановы осмотр |
XPDIS |
Экспоненциальная ф-ия распределения |
Очереди: |
|
TRUBIL |
ЭВМ-серверы которые стоят неисправные |
Таблицы: |
|
LENTH |
Таблица, в которую заносят число неисправных ЭВМ-серверов |
В табл.3.1 за единицу времени выбрана 1 минута.
Рассмотрим программу модели, составленную на языке GPSS.
XPDIS FUNCTION RN1,C24
0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2
,75,1.38/.8,1.6/.84,1.85/.88,2.12/.9,2.3/.92,2.52/.94,2.81
.95,2.99/.96,3.2/.97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2
.999,7/.9998,8
JOBS FUNCTION RN1,C2
0,1/1,4
LENTH TABLE P2.0,1,W6
*
* MODEL SEGMENT 1
*
1 GENERATE 1440,,1,,2
2 SPLIT FN$JOBS,NEXT1
3 NEXT1 SEIZE BAY
4 ADVANCE 120,30
5 RELEASE BAY
6 TERMINATE
*
* MODEL SEGMENT 2
*
7 GENERATE 2880,FN$XPDIS,,,2
8 QUEUE TRUBL
9 PREEMPT BAY
10 ADVANCE 150,FN$XPDIS
11 RETURN BAY
12 DEPART TRUBL
13 TERMINATE
*
* MODEL SEGMENT 3
*
14 GENERATE 1400,,481,,3
15 PREEMPT BAY,PR
16 ADVANCE 960
17 RETURN BAY
18 TERMINATE
*
* MODEL SEGMENT 4
*
19 TRANSFER ,,,1,1,2,F
20 WATCH MARK 1
21 ASSIGN 2,0$TRUBL
22 TEST NE MP1,0
23 TERMINATELENTH,MP1
24 TRANSFER ,WATCH
*
* MODEL SEGMENT 5
*
25 TRANSFER 7200..6241
26 TERMINATE1
*
* CONTROL
*
START 5,,1,1
END
Логика работы модели
В моделе предполагается, что некоторое время, равное единице, соответствует 8 ч утра первого дня моделирования.Затем,первая (по счёту) ЭВМ выделенная диспетчером для планового осмотра, входит в модель, выйдя из GENERANE. Далее, каждая следующая первая ЭВМ, будет поступать в модель через 24 ч. ( блок 1, где операнд А=1440 ед.врем., т.е числу минут в 24 ч. Первое появление 5 диспетчера на ВЦ произойдет в момент времени, равный 481(блок 14). Это соответствует окончанию восьмого часа. Второй раз диспетчер появится через 24 часа.
Транзакт обеспечивающий промежуточную выдачу: впервые появится во время, равное 6241, выходя из блока 25. Это число соответствует концу 8-го часа пятого дня моделирования. ( 24 х 4 = 96 ч,96 + 8 = 104. 104 х 60 =6240, 6240 + 1 = 6241 ч). Следующий транзакт появится через пять дней.
Блок 19 позволяет вести моделирование до времени в 35041, что соответствует 25 дням плюс 8 ч, выраженных в минутах.
Приоритетная схема представлена в табл.3.2.
Таблица 3.2.
Сегмент модели |
Интерпретация транзактов |
Уровень приорит. |
3 |
Диспетчер |
3 |
1 |
ЭВМ, прибывающие на плановый осмотр |
2 |
2 |
ЭВМ-сервер, поступающая на внеплановый ремонт |
2 |
4 |
Транзакт, наблюдающий за очередью |
1 |
5 |
Транзакты, обеспечивающие выдачу на печать |
0 |
Чтение таблицы сверху вниз эквивалентнопросмотруцепи текущиж событий с начала и до конца моделирования
Результаты моделирования
Полученная статистикаочереди ЭВМ-серверов на ремонт показывает, что на конец 25 дня среднее ожидания составляет 595 вр.ед.,или около 19 ч.В среднем 0,221 ЭВМ-сервер ожидают обслуживания, и одновременно самое большее время 4 машины находятся в ожидании. За 25 дней на внеп- лановый ремонтпоступило13 машин.. Табличная информация указывает, что 83 % времени это были ЭВМ-серверы , ожидающие внепланового ремонта, 12% времени вожидании находилась одна машина,4%- две машины, и только 0,52% и 0,05% времени одновременно ожидали три и четыре машины. Для удобства результаты сведены в табл.3.3.
Таблица 3.3.
Число ожидающих ЭВМ |
Время ожида-ния в % |
0 машин |
83 |
1 машина |
12 |
2 машины |
4 |
3 машины |
0,52 |
4 машины |
0,05 |
Пусть в состав ВЦ входит 50 персональных компьютеров ( в дальнейшем просто ЭВМ). Все ЭВМ работают по 8 ч в день, и по 5 дней в неделю. Любая из ЭВМ может выйти из строя, и в любой момент времени.Вэтом случае её заменяют резервной ЭВМ либо сразу, либо по мере её появления после восстановления.Неисправную ЭВМ отправляют в ремонтнуюгруппу, ремонтируют, и она становится резервной.
Необходимо определить,сколько ремонтниковследуетиметь, и сколько машин держать в ремонте, оплачивая их аренду.Парк резервных машин служит для подмены вышедших из строя ЭВМ.принадлежащих ВЦ. Оп- лата арендных машин не зависит от того находятся они в эксплуатации , или в резерве.
Цель анализа - минимизировать стоимость эксплуатации ВЦ.оплата рабочих в ремонтной группе составляет 3,75$ в ч. Арендная плата за одну ЭВМ составляет 30$ в день. Почасовой убыток при использовании менее 50 ЭВМ оценивается примерно в 20$ за ЭВМ.этот убыток возникает из за общего снижения промзводительности ВЦ. Считаем, что на ремонт вышедшей из строя ЭВМ уходит примерно 7ч,и распределение этого времении равномерное.
Необходимо определить,сколько ремонтниковследуетиметь, и сколько машин держать в ремонте, оплачивая их аренду.Парк резервных машин служит для подмены вышедших из строя ЭВМ.принадлежащих ВЦ. Оплата арендных машин не зависит от того находятся они в эксплуатации , или в резерве.
Среднее время наработки на отказ каждой ЭВМ распределенотакже равномерно, и составляет 157 ± 25 ч.Это время и распределение оди- наково для всех ЭВМ ВЦ, так и для арендуемых ЭВМ.
Так как плата за аренду не зависит оттого, используют эти ЭВМ или нет, то и не делается попыток увеличить число собственных ЭВМ ВЦ.
Необходимо построитьGPSS модель такой системы и исследовать на ней дневные расходы при разном числе арендуемых ЭВМ при при одинаковом числе ремонтников и от числа ремонтников при постоянном числе арендуемыхЭВМ.
Метод построения модели
Определим ограничения, которые существуют в моделируемой системе. Существуют три ограничения.
1. Число ремонтников в ремонтной группе.
2. Минимальное число ЭВМ, одновременно работающих на ВЦ.
3. Общее число ЭВМ циркулирующих в системе.
Для моделирования 1 и 2 ограничений удобно использоватьмногоканальные ус-ва ( термин взят из теории СМО), а третье ограничение-моделировать при помощи транзактов.При этом ремонтники и работающие ЭВМ, находящиеся в производстве, являются константами. При этом ЭВМ являются динамическими объектами, циркулирующими в системе.
Рассмотрим состояния в которых может находиться ЭВМ. Пусть в настоящий момент она находится в резерве.Тогда многоканальное ус-во NOWON (т.е. в работе) используется для моделирования работающих ЭВМ, будет заполнено, и резервные машины не могут войти в него. И тогда транзакт моделирующий резервную ЭВМ может после многократных попыток войти в NOWON. Проходя через блоки ENTER и ADVANCE транзакт моделирует время работы до тех пор, пока ЭВМ не выйдет из строя.
После выхода из строя ЭВМ транзакт покидает NOWON . При этом возникает возможность у другой резервной ЭВМ войти в него,и если транзакт ожидает возможность войти в многоканальное ус-во MEN (ремонтнаягруппа. котораям.б.представлена даже одним ремонтником).Выйдя из MEN транзакт становится восстановленной ЭВМ. После ремонта он покидает MEN , освобождая ремонтника, который может начать немедленно ремонт другой ЭВМ. Сам транзакт поступает в ту часть модели, из которой он начинает попытки войти в NOWON.
Общее число ЭВМ циркулирующих в системе равно 50 плюс три ЭВМ резервных, и это число надо задать до начала прогона,используя ограничительные поля блока GENERITE.Для определения времени прогонабудет использовать программный таймер, рассчитанный на время в 62440 ед.вр., что составляет 3 года, по 40 недель в году.
Рассмотрим таблицу определений (Табл.4.1).
Таблица 4.1
Операторы GPSS |
Назначение |
Транзакты: |
|
1-вый сегмент |
ЭВМ |
2-рой сегмент |
Таймер |
Многоканальные ус-ва |
|
MEN |
Ремонтник |
NOWON |
Накопитель на 50 ЭВМ наход. в раб. |
Рассмотрим блок-схему программы.
Программа
STORAGE5$MEN,3/5$NOWON,50
*
* MODEL SEGMENT 1
*
1 CNTRL GENERATE ,,,53
2 ENTER NOWON,
3 ADVANCE 157,25
4 LEAVE NOWON
5 ENTER MEN
6 ADVANCE 7,3
7 LEAVE MEN
8 TRANSFER ,BACK
*
* MODEL SEGMENT 2
*
GENERATE 6240
TERMINATE 1
*
* CONTROL
*
START 1
1 CNTRL GENERATE ,,,54
CLEAR
START 1
1 CNTRL GENERATE ,,,55
CLEAR
START 1
STORAGE5$MEN,4
1 CNTRL GENERATE ,,,53
CLEAR
START 1
1 CNTRL GENERATE ,,,54
CLEAR
START 1
1 CNTRL GENERATE ,,,55
CLEAR
START 1
STORAGE5$MEN,5
1 CNTRL GENERATE ,,,53
CLEAR
START 1
1 CNTRL GENERATE ,,,53
CLEAR
START 1
1 CNTRL GENERATE ,,,54
CLEAR
START 1
1 CNTRL GENERATE ,,,55
CLEAR
START 1
END
Оценка результатов
При фиксированном числе ремонтников и при достаточномаломчисле -арендуемых машин, расходывеликииз-за снижения производительности ВЦ. При большом числе Дарендуемых машин, расходы велики из-за их избыточного числа. Очевидно, необходимо найти минимум между этими значениями (Рис.4.2).
При заданном числе арендуемых машин,число ремонтников так,как это представлено на Рис.4.3.
При малом числе ремонтников, расходы велики из-за оплаты простаивающих ремонтников.
В табл.4.2. показана величина нагрузки,проходящей через MOWON , как функция "ремонтник-арендуемые машины". При заданном числе ремонтников нагрузка растёт при увеличении числа арендуемых машины.Аналогично этомупри заданном числе арендуемых машины нагрузка растёт при увеличении числа ремонтников.
Таблица 4.2
Числозанятыхремонтников |
Число арендуемых машины |
||
|
3 |
4 |
5 |
3 |
0,983 |
0,989 |
0,992 |
4 |
0,989 |
0,993 |
0,995 |
5 |
0,991 |
0,993 |
0,997 |
В табл.4.3 - 4.5 собраны значения расходов для соотношения "ре- монтник-Дарендуемые машины" В табл. 4.3 показаны фиксированные значе- ния оплаты труда ремонтников и арендуемой платы за машины..
Таблица 4.3
Число занятых ремонтников |
Число -арендуемых машин |
||
3 |
4 |
5 |
|
3 |
180 |
210 |
240 |
4 |
210 |
240 |
270 |
5 |
240 |
270 |
300 |
В табл 4.4 указана стоимостьуменьшения производительности,ВЦ.
Таблица 4.4
Число занятых ремонтников |
Число -арендуемых машин |
||
3 |
4 |
5 |
|
3 |
136 |
88 |
64 |
4 |
88 |
56 |
40 |
5 |
73 |
56 |
24 |
В табл.4.показана сумма этих расходов.
Таблица 4.5
Число занятых ремонтников |
Число -арендуемых машин |
||
3 |
4 |
5 |
|
3 |
316 |
298 |
304 |
4 |
298 |
296 |
310 |
5 |
312 |
326 |
324 |
Из последней таблицы можно сделать вывод о том,что наиболее выгодным соотношением является 4 ремонтника и 4 арендуемые машины.