Сплавы магнитных переходных металлов

Сдавался/использовалсяМарийский Государственный Университет (МарГУ), Йошкар-Ола, 2001г.
Загрузить архив:
Файл: ref-9221.zip (29kb [zip], Скачиваний: 97) скачать

Сплавы магнитных переходных металлов

В последние годы интенсивно изучали электронную структуру и разнообразие физических свойств сплавов переходных металлов. Для изучения магнитных свойств сплавов переходных металлов очень полезным оказался метод рассеяния медленных нейтронов. Исследование упругого и неупругого рассеяния медленных нейтронов в сплавах позволяет получить уникальную информацию о магнитных моментах и форм-факторах, а также об изменении спин-волновой жесткости.

Небходимо отметить, что нейтронные исследования распределения магнитного момента в магнитных сплавах и изменение спин-волновой жесткости во многом стимулировали развитие современных методов расчета электронной структуры неупорядоченных сплавов, которые чрезвычайно полезны для решения многих задач физики твердого тела. К ним относят широко теперь известный метод когерентного потенциала [160].

Модель Хаббарда окозалась очень полезной для описания многих электронных и магнитных свойств сплавов переходных металлов и успешно применяется в большом количестве работ. При описании неупорядоченных сплавов с помощью модели Хаббарда вводятся случайные параметры, поэтому говорят о модели Хаббарда со случайными параметрами.

Перейдем к ее описанию. Предполагается, что взаимодействие электронов в бинарном неупорядоченном сплаве из двух магнитных компонент описывается следующим модельным гамильтонианом:

     (69)

Здесь, как и в (11), - операторы уничтожения и рождения электронов Ванье в узле i со спином s. Считается, что интегралы перескока одинаковы для обоих сортов атомов А и В, т.е. и - одночастичный потенциал и внутриатомное кулоновское взаимодействие соответственно:

                  (70)

Длянеупорядоченного сплава величины и принимают случайные значения в зависимости от того, заполнен ли узел атомом А или В.

Гамильтониан (69) исследовали многие авторы в различных предельных случаях. Если предположим, что какая-либо из компонент сплава (например, В) состоит из немагнитных атомов, то можно положить параметр в (69), получим модельный гамильтониан, который рядом авторов [163, 164] был использован для теоретического описания сплава Pd-Ni. Случай, когда

Метод когерентного потенциала [160] позволяет рассматривать сплав с конечной концентрацией примесей. Можно выделить два направления работ, использующих метод когерентного потенциала для описания неупорядоченных сплавов.

Начало первому направлению положила работа [169]. В ней была дана теоретическая интерпретация зависимости от концентрации средней намагниченности, атомных моментов компонент и электронной теплоемкости для сплава NicFe1-c. К этому направлению примыкают работы [170-174].

Подход Хасегава и Канамори (ХК) основан на использовании приближения Хартри-Фока для описания внутриатомной кулоновской корреляции. В этом случае гамильтониан (69) записывался в следующем виде [169]:

         (71)

где

    (71а)

таким образом, неупорядоченность, описываемая в рамках приближения когерентного потенциала, характеризуется двумя параметрами и в (71а), которые различаются для разных компонент сплава (или iÎA, или В), должно определяться самосогласованным образом. Последнее обстоятельство приводит к тому, что не каждая элементарная ячейка является электрононейтральной и может иметь место перенос конечного заряда.

Для одночастичного гамильтониана (71) применима стандартная схема метода когерентного потенциала, которую здесь опишем, следуя обозначениям работы [160]. В методе когерентного потенциала (СРА) рассматривается одноэлектронный гамильтониан следующего вида:

      (72)

Здесь W – периодическая часть; D – сумма случайных вкладов, каждый из которых связан с одним узлом. Одноэлектронные свойства сплава вычисляются как средние по ансамблю по всем возможным конфигурациям атомов в решетке. Обычно рассматривают усредненную подобным образом одноэлектронную функцию Грина G(z):

               (73)

Определим Т-матрицу для данной конфигурации сплава с помощью уравнения

              (74)

Тогда функциональное уравнение для определения неизвестного оператора S будет задаваться условием

                 (75)

Уравнение (75) является самосогласованным определением оператора S.

Полагая, что

          (76)

можно ввести локальный оператор рассеяния

              (77)

С помощью оператора Tn эффективная среда, характеризуемая оператором S, заменяется рассеянием на реальном атоме в данном узле n. В методе когерентного потенциала общее условие самосогласования (75) заменяется его одноузельным приближением

                (78)

таким образом, при этом подходе примесь считается находящейся в эффективной среде, функция Грина которой подбирается так, чтобы Т-матрица рассеяния на примеси в среднем была равна нулю. При этом будем пренебрегать рассеянием парами атомов и более крупными кластерами. Метод когерентного потенциала точен в атомном пределе, когда перескоки электронов с узла на узел очень маловероятны. Сравнение приближений виртуального кристалла, средней Т-матрицы и когерентного потенциала, проведенное в [175], показало, что метод когерентного потенциала не хуже аппроксимации виртуального кристалла.

В методе когерентного потенциала усредненная функция Грина неупорядоченной системы получается из функции Грина для идеальной решетки заменой энергии на комплексную величину. Аналитические свойства величин, вычисляемых в одноузельном приближении когерентного потенциала, нетривиальны; функция Грина аналитична всюду, кроме линий разрезов, соответствующих примесной зоне и зоне основного кристалла.

Существенно, что в методе когерентного потенциала эффект рассеяния электронов вследствие неупорядоченности описывается комплексной величиной, а именно когерентным потенциалом. С точки зрения квантовой механики в этом нет ничего необычного. Напомним, что при многократном рассеянии волны на произвольном ансамбле рассеивателей вводитсяусредненная по ансамблю волновая функция, а потенциал в уравнении Шредингера становится комплексным [176]. Мнимая часть потенциала описывает поглощение вследствие рассеяния.

Основная характеристика спектра возбуждений системы есть плотность состояний на единицу энергии D(e). Она определяется мнимой частью функции Грина =GCPA. На основе одночастичной плотности состояний с помощью метода когерентного потенциала можно хорошо описать поведение параметра асферичности g для сплавов Ni, Fe и Co [177].

Параметр асферичности является важной характеристикой, экспериментально измеряемой с помощью рассеяния медленных нейтронов и определяется следующим соотношением:

g/ m(79)

где m eg- магнитный элемент, определяемый электронами в состояниях eg- типа, m - полный спиновый магнитный момент.

Эксперименты по рассеянию нейтронов показывают, что измеряемые значения g в зависимости от m очень точно укладываются на прямую линию практически для всех сплавов Ni, Fe и Co. Т. е.

g = а +bm     (80)

Только для чистого Ni это не выполняется; gNiзначительно меньше величины, следующей из (80). Возможной причиной такого отклонения для чистого Ni может быть либо влияние корреляции электронов, либо специфика одно-частичного поведения системы. В [177] были рассмотрены только одно-частичные свойства системы в подходе Хасегава и Канамори (71) и показано, что для расчета параметра асферичности влияние корреляции не очень существенно. Как и в  [169], рассматривалась область концентраций сплава при 0 ≤ с ≤ 0,5. Хасегава и Канаморис помощью метода когерентного потенциала вычислили магнитный момент m и локальные моменты m (Ni) и m (Fe). Их результаты хорошо согласуются с экспериментом. Однако, надо заметить, что они использовали не реальную плотность состояний, а сильно идеализированную функцию и проблема решалась с использованием многих свободных параметров.

В [177]впервые была использована реальная теоретическая плотность состояний [51, 178] для расчета параметра асферичности g Для точного расчета g необходимо было отдельно учесть eg- и t2g– состояния. Получитьтакие раздельные плотности весьма сложно из-за сильной гибридизации этих состояний. В [177]использовано то обстоятельство, что в точках и на линиях высокой симметрии, где гибридизация отсутствует, волновые функции можно отождествить с eg- и t2g– состояниями. Предполагалось, что количественно поведение волновых функций не сильно изменяется при переходе к другим точкам. Используемая теоретическая плотность состояний состоит из шести подзон, две из них связаны с s-электронами, а остальные четыре имеют в указанных точках и на линиях высокой симметрии поведение плотности состояний электронов в t2gи eg-состояниях. Поэтому можно предположить приближённое разделение плотности состояний на составляющие для t2gи eg- – электронов.

В методе когерентного потенциала, выражение для плотности состояний в сплаве имеет вид [177]

(ε) = - Im (ε),             (81)

где

=   (82)

Σi– когерентный потенциал, определяемый из уравнения

Σi= х Δ + Σi(Δ - Σi)(ε)                (83)

FebNi. В [169] этот параметр очень сильно зависит от спина   (Δ   и   для i = t2gи различных концентраций. Полученный на основе этих результатов для параметр асферичности γ показан на рис. 11. согласие с экпериментом хорошее.

Интересно отметить, что результаты для вычисленных Эльком значений μ, μ(Ni) и μ (Fe) оказываются хуже, чем в работе Хасегава и Канамори. Возможной причиной этого может быть влияние корреляций на значение μ, для описания которой в [169] использовалидополнительные свободные параметры. В то же время, как видно на рисунке 11 поведение параметра асферичности хорошо объясняется уже на основе одно-частичной плотности состояний оптимально приближённой к реальной. Дальнейшее обсуждение подхода Хасагава –Канамори дано в [179].

Другое направление описания неупорядоченных сплавов с помощью гамильтониана (69)развивалось в [180-181]; конкретно [180] рассматривался сплав Pd-Ni. Подробно проанализировал различие этих двух подходов Фукуяма. [162, 174]. Он показал, что в подходе Харриса-Цукермана [180] основное внимание сосредотачивается на динамических эффектах кулоновского взаимодействия, а пространственным изменением потенциала пренебрегается.Поэтому такие одно-частичные величины, как локальная плотность состояний, являются пространственно однородными, за исключением возможного существования виртуально связанных состояний. Схема является самосогласованной, если имеет место равенство ….. в управлении (69); в этом случае возможно, в отличие от (71) учесть некоторые процессы элекрон-дырочного рассеяния более высокого порядка.

Различие между подходами Хосегава-Канамори [169, 173, 179] и Харриса-Цукермана [180] наиболее заметно проявляется при рассмотрении коллективных эффектов, в частности, при вычислении спиновой восприимчивости. Это связанно с тем, что при построении теории электронных и магнитных свойств неупорядоченных сплавов описывающихся гамильтонианом (69), необходимо учитывать случайное расположение атомов компонент на решётке и влияния кулоновской корреляции электронов на электронную структуру и физические свойства. Если, как мы видели выше, одно-частичные характеристики сплавов (например, параметр асферичности γ ) слабо зависит от корреляционных эффектов. То, для коллективных свойств правильный учёт корреляции более существен.