Примечание | Каpтинки выполнены не полностью, поэтому их сpисовать пpидется вpучную, взяв в библиотеке книгу из 2-го пункта списка литеpатуpы, и сpисовать оттуда каpтинки |
Загрузить архив: | |
Файл: 240-1146.zip (29kb [zip], Скачиваний: 97) скачать |
Введение
Одной из основных задач теории автоматического регулирования является изучение динамических процессов, происходящих в автоматических системах. Автоматические системы при нормальной эксплуатации должны поддерживать определенный режим работы объекта регулирования при действии на него многих возмущающих факторов. Такое поведение может быть достигнуто лишь в системах автоматического регулирования, обладающих устойчивостью по отношению к этим воздействиям. Устойчивость системы означает, что малое изменение входного сигнала или какого-нибудь возмущения, начальных условий или параметров не приведут к значительным отконениям выходного сигнала. Это определение раскрывает физический смысл понятия устойчивости.
Теория устойчивости, основоположниками которой являются великий русский ученый А.М. Ляпунов и великий французский ученый А.Пуанкаре, представляет собой важный раздел прикладной математики. Создателями современной теории устойчивости являются русские ученые Н.Г. Четаев, Е.А. Барбашин, Н.П. Еругин, Н.Н. Красовский.
1. Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову.
Рассмотрим задачу Коши для нормальной системы дифференциальных уравнений
x’ = f ( t ,x ) |
(1)
с начальными условиями x ( t0 ) = x0 (2)
где x =( x1, x2, ... , xn ) - n - мерный вектор; t Î I = [t0, +¥ [- независимая переменная, по которой производится дифференцирование;
f ( t, x ) = ( f1 ( t , x ) , f2 ( t , x ) , ... , fn ( t , x ) ) - n - мерная вектор - функция.
Комментарии к задачеКоши (1),(2). Для простоты восприятия эту задачу можно сначала трактовать как задачу Коши для скалярного дифференциального уравнения первого порядка вида x’= f ( t , x ) с начальным условиемx ( t0 ) = x0. С целью упрощениявсе рисунки п. 10 ,если нет специальных оговорок, приводится для случая n = 1.
x 0 t Рис.1 |
Так как задача теории устойчивости впервые возникла в механике, то переменную t принято интерпретировать как время, а искомую вектор-функциюx ( t ) - как движение точки в зависимости от времени в пространстве Rn+1 (рис.1)
Пусть задача Коши (1), (2)удовлетворяет условиям теоремы существования и единственности. Тогда через каждую точку ( t0 , x0 ) области единственности решений проходит только одна интегральная кривая. Если начальные данные (t0 , x0 )изменяются, то изменяется и решение. Тот факт, что решение зависит от начальных данных, обозначается следующим образом: x ( t ) = x ( t ; t0 , x0 ). Изменение этого решения в данной математической модели с изменением начальных данных ( t0 , x0 ) приводят к существенному изменению решения x ( t ; t0 , x0 ), приводит к тому, что такой моделью нельзя пользоваться, поскольку начальные данные( t0 , x0 )получаются из опыта, а изменения не могут быть абсолютно точными. Естественно, что в качестве математической модели пригодна лишь та задача Коши, которая устойчива к малым изменениям начальных данных.
Определим понятие устойчивости, асимптотической устойчивости и неустойчивости в смысле Ляпунова. Для этого отклоение решения x ( t ) = x ( t ; t0 , x0 ) , вызванное отклонениемDx0 начального значения x0 , будем записывать следующим образом:
| x ( t ; t0 , x0 + Dx0 ) - x ( t ) |= | x ( t ; t0 , x0 + Dx0 ) - x ( t ; t0 , x0 ) |.
Определение 1. Решение x ( t ) = x ( t ; t0 , x0 ) системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если оно непрерывно поx0на интервале I = = [ t0, +¥ [ , т.е. " e> 0$ d > 0 такое, что " Dx0
|Dx0 |£ d Þ | x ( t ; t0 , x0 + Dx0 ) - x ( t ) | £ e " t ³ t0.
Если, кроме того, отклонение решения x ( t ) стремится к нулю при t ® +¥ для достаточно малых Dx0 , т.е. $ D > 0" Dx0.
|Dx0 |£ D Þ | x ( t ; t0 , x0 + Dx0 ) - x ( t ) | ® 0 , t ® +¥ . (3)
то решениеx ( t ) системы (1) называется асимптотически устойчивым в положительном направлении (или асимптотически устойчивым).
Аналогично определяются различные типы устойчивости решения в отрицательном направлении.
Комментарий к определению1. 1) Геометрически устойчивость по Ляпунову решениех ( t ) можно интерпритировать следующим образом ( рис.1 ) : все решения x ( t ; t0 , x0 + Dx0 ) , близкие в начальный момент t0 к решению x ( t )(т.е. начинающиеся в пределах d- трубки ) , не выходят за пределыe - трубки при всех значениях t ³t0 .
x 0 t Рис.2
|
2) Асимптотическая устойчивость есть устойчивость с дополнительным условием (3) : любое решение x1 ( t ) , начинающееся в момент t0 в D - трубке, с течением времени неограниченно приближается к решению x ( t )(рис.2). Трубка радиуса D называется областью притяжения решения x ( t ). Решение x2 ( t ), начинающееся при t = t0 за пределами области притяжения, но в пределах d- трубки, не покидаетe - трубку, хотя может и не приближаться к решению x(t).
Определение 2. Решение x ( t )=x ( t ; t0 , x0 ) системы (1) называется неустойчивып по Ляпунову в положительном направлении (или неустойчивым), если оно не является устойчивым в положительном направлении.
Аналогично определяется неустойчивость в отрицательном направлении.
Комментарий к определению 2. Геометрически неустойчивость по Ляпунову означает, что среди решений, близких в начальный момент t0 к решению х ( t ) , найдется хотя бы одно, которое в некоторый момент t1 ( свой для каждого такого решения) выйдет за пределыe - трубки (рис.3).
Приведем примеры из механики, иллюстрирующие определения различных типов устойчивости для одномерного случая, т.е. n = 1.
Рассмотрим маятник, состоящий из точечной массы m, укрепленной на невесомом стержне длиной l (рис.4). Выведем маятник из состояния I, отклонив стержень на угол a ; тогда, как известно из опыта, он будет стремиться занять вновь положение I. Если пренебречь сопротивлением окружающей среды, то маятник будет колебаться возле положения I сколь угодно долго с амплитудой, равной начальному отклонению, - это модель устойчивого положения равновесия. Если же учитывать сопротивление окружающей среды, то амплитуда колебаний маятника будет уменьшаться и в итоге он снова займет положение I - это модель асимптотически устойчивого положения равновесия. Если маятник находится в положении II, то малейшее его смещение приведет к удалению маятника от состояния II - это модель не устойчивого положения равновесия.
x
0 t
Рис.3 Рис.4
Исследование устойчивости произвольного решения x ( t ) системы (1) всегда можно свести к исследованию устойчивости нулевого решения некоторой преобразованной системы. Действительно, в системе(1) произведем подстановку y ( t ) = x - x (t). Тогда получим систему
y’= F ( t, y ). (4)
гдеF ( t , y ) = f ( t , y ( t ) + x ( t ) ) - f ( t , x ( t ) ) ,F (t, 0)º 0 " t ³ t0.
Решению x ( t ) системы (1) соответствует нулевое решение y (t) º 0 системы (4).
В дальнейшем будем предполагать, что система (1) имеет нулевое решение, т.е. f ( t , 0 ) = 0 " t ³ t0, и ограгничимся исследованием устойчивости нулевого решения. Переформулируем определения различных типов устойчивости для нулевого решения x ( t )º 0системы (1).
Определение 3. Нулевое решение x ( t ) º 0 системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если " e > 0 $ d = d (e)> 0 такое, что" x0
| Dx0 |£ d Þ | x ( t ; t0 , x0) | £ e " t ³ t0.
Если кроме того,
$ D > 0 " x0 | Dx0 |£ D Þ | x ( t ; t0 , x0) | ® 0 , t ® +¥ ,
то решениеx ( t ) º 0 системы (1)называется асимптотически устойчивым в положительном направлении ( или асимптотически устойчивым ) .
Определение 4. Нулевое решение x ( t ) º 0 системы(1)называется неустойчивым по Ляпунову в положительном направлении (или неустойчиво), если оно не является устойчивым в положительном направлении, т.е.
$ e > 0 $ t1 > t0 " d> 0 x0¹ 0 |x0 |£ d Þ | x ( t ; t0 , x0) | > e.
Геометрическая интерпритация устойчивости, асимптотической устойчивости и неустойчивости нулевого решенияx ( t )º 0 системы (1)дана соответственно на рис.5-7.
x t 0 Рис.5 |
x t 0 Рис.6 |
x t 0 Рис.7 |
2.Устойчивость решения автономной системы. Устойчивость решения системы линейных дифференциальных уравнений с постоянными коэффициентами.
Система обыкновенных дифференциальных уравнений называется автономной (или стационарной, или консервативной, или динамической), если независимая переменная не входит явно в систему уравнений.
Нормальную автономную систему n - го порядка можно записать в векторной форме :
dx / dt = f ( x ). (5)
Рассмотрим задачу Коши для системы (5) с начальными условиями (2). В дальнейшем предполагаем, что задача Коши (5), (2) удовлетворяет условиям теоремы существования и единственности.
Пусть x = x ( t ) - есть решение системы (5). Направленная криваяg , которую можно параметрически задать в виде xi = xi ( t ) ( i = 1, ... , n ), называется траекторией (фазовым графиком) системы (5) или траекторией решения x = x ( t ). Пространство Rn с координатами ( x1 , ... , xn ), в котором расположены траектории системы (5), называется фазовым пространством автономной системы (5). Известно, что интегральные кривые системы (5) можно параметрически задать в видеt = t , x1 = x1 ( t ), ... , xn = xn ( t ). Следовательно, интегральная кривая принадлежит пространству Rn+1 с координатами ( t , x1 , x2 , ... , xn ) , а траектория является проекцией интегральной кривой на пространство Rn параллельно оси t. Проиллюстрируем это для случая n= 2 , т.е. когда Rn+1- трехмерное пространство, а фазовое пространство Rn- двумерная плоскость. На рис.8,а изображена интегральная кривая, заданная параметрическими уравнениями t = t, x1 = x1 ( t ) , x2 = x2 ( t ), на рис.8,б -ее проекция на плоскость, т.е. траектория, заданная параметрическими уравнениями x1 = x1 ( t ) , x2 = x2 ( t ). Стрелкой указано направление возрастания параметра t.
x2 x2
0 t 0 x1 x1 а) Рис.8 б)
|
Определение 5.Точка ( a1, a2 , ... , an ) называется точкой покоя (положением равновесия) автономной системы (5), если правые части f1 , f2 , ... , fnсистемы (5) обращаются в этой точке в нуль, т.е. f (a) = 0, гдеa = ( a1 , a2 , ... , an ) , 0 = ( 0 , 0 , ... , 0 ) .
Если ( a1 , ... , an ) - точка покоя, то система (5) имеет постоянное решение x ( t ) = a. Как известно, исследование устойчивости любого, а значит, и постоянного решения a можно свести к исследованию устойчивости нулевого решения. Поэтому далее будем считать, что система (5) имеет нулевое решение x ( t )º 0 , т.е. f ( 0 )= 0, и точка покоя совпадает с началом координат фазового пространства Rn. В пространстве Rn+1 точке покоя соответствует нулевое решение. Это изображено на рис.8 для случая n = 2.
Таким образом, устойчивость нулевого решения системы (5) означает устойчивость начала координат фазового пространства системы (5), и наоборот.
Дадим геометрическую интерпретацию устойчивого, асимптотически устойчивого и неустойчивого начала плоскости, т.е. когда n = 2. Для этого следует спроектировать аналоги рис.5-7 в двумерном случае на фазовую плоскость R2, причем проекциями e - трубки и d - трубки являются окружности с радиусами e иd. Начало x = 0 устойчиво, если все траектории, начинающиеся в пределах d - окружности, не покидают e - окружность " t ³ t0 (рис.9) ; асимптотически устойчиво, если оно устойчиво и все траектории, начинающиеся в области притяженияD , стремятся к началу (рис.10) ; неустойчиво, если для любой e - окружности и всехd > 0существует хотя бы одна траектория, покидающая ее (рис.11).
Нормальная система линейных дифференциальных уравнений с постоянными коэффициентами, имеющая вид
dx / dt = A x, (6)
гдеA - постоянная матрица размера n´n , является частным случаем системы (5). Следовательно, для этой системы справедливы все сделанные выше утверждения об автономных системах.
x2
0 x1 Рис.9 |
x2
0 x1 Рис.10 |
x2
0 x1 Рис.11 |
3. Простейшие типы точек покоя.
Пусть имеем систему дифференциальных уравнений
ædx / dt = P ( x , y ),
í (A)
îdy / dt = Q ( x , y ).
Точка ( x0 , y0 ) называется точкой покоя или особой точкой системы (A), если P ( x0 , y0 ) = 0 , Q ( x0 , y0 ) = 0.
Рассмотрим систему
ædx / dt = a11 x + a12 y,
í (7)
îdy / dt = a21 x + a22 y.
гдеaij ( i , j = 1 , 2 ) - постоянные. Точка ( 0 , 0 ) является точкой покоя системы (7). Исследуем расположение траектории системы (7) в окрестности этой точки. Ищем решение в виде
x =a1 e k t , y = a2 e k t. (8)
Для определения k получаем характеристическое уравнение
a11 - k a12
= 0. (9)
a21 a22 - k
Рассмотрим возможные случаи.
I. Корни характеристического уравнения действительны и различны. Подслучаи :
1) k1 < 0, k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).
2) k1>0, k2> 0. Точка покоя неустойчива (неустойчивый узел).
3) k1> 0, k2< 0. Точка покоя неустойчива (седло).
4) k1= 0,k2 >0. Точка покоя неустойчива.
5) k1= 0,k2 < 0. Точка покоя устойчива, но не асимптотически.
II. Корни характеристического уравнения комплексные : k1 = p + q i, k2 = p - q i. Подслучаи :
1) p < 0 , q¹ 0. Точка покоя асимптотически устойчива (устойчивый фокус).
2) p > 0 , q¹ 0. Точка покоя неустойчива (неустойчивый фокус).
3) p = 0, q¹ 0. Точка покоя устойчива (центр). Асимптотической устойчивости нет.
III. Корни кратные: k1= k2 . Подслучаи :
1) k1 = k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).
2) k1 = k2 > 0. Точка покоя неустойчива (неустойчивый узел).
3) k1 = k2 = 0. Точка покоя неустойчива. Возможен исключительный случай, когда все точки плоскости являются устойчивыми точками покоя.
Для системы линейных однородных уравнений с постоянными коэффициентами
dxi n
= å ai j xj ( i = 1 , 2 , ... , n ) (10)
dt i=1
характеристическим уравнением будет
a11 - k a12 a13 ... a1n
a21 a22 - k a23 ... a2n = 0. (11)
. . . . . . . .
an1 an2 an3 ... ann - k
1) Если действительные части всех корней характеристического уравнения (11) системы (10) отрицательны, то точка покоя xi ( t )º 0 ( i = 1 , 2 , ... , n ) асимптотически устойчива.
2) Если действительная часть хотя бы одного корня характеристического уравнения (11) положительна, Re k i = p i > 0, то точка покоя xi ( t )º 0 ( i = 1, 2, ... n ) системы (10) неустойчива.
3) Если характеристическое уравнение (11) имеет простые корни с нулевой действительной частью (т.е. нулевые или чисто мнимые корни ), то точка покоя xi ( t )º 0 ( i = 1, 2, ... n ) системы (10) устойчива, но не асимптотически.
Для системы двух линейных линейных уравнений с постоянными действительными коэфициентами
.
æx= a11 x + a12 y,
í . (12)
îy= a21 x + a22 y
характеристическое уравнение (9) приводится к виду
k2 + a1 k + a2= 0.
1) Если a1 > 0 , a2 > 0, то нулевое решение системы (12) асимптотически устойчиво.
2) Если а1 > 0 , a2 = 0, или a1 = 0 , a2> 0 , то нулевое решение устойчиво, но не асимптотически.
3) Во всех остальных случаях нулевое решение неустойчиво; однако при a1 = a2 = 0 возможен исключительный случай, когда нулевое решение устойчиво, но не асимптотически.