Название Оценка кредитоспособности предприятий на основе нейросетевых технологий
Количество страниц 61
ВУЗ МГИУ
Год сдачи 2009
Содержание Содержание:

Введение
Глава 1. Понятие нейросетевых технологий и нейросетевого анализа
1.1. Основные понятия нейросетевого анализа
1.2. Общие характеристики нейросетей
1.3. Преимущества нейросетевых сетей
Глава 2. Применение нейросетевой технологии
Глава 3. Оценка кредитоспособности предприятий на основе нейросетевых технологий
3.1. Построение нейронной сети для определения кредитоспособности заемщика
Заключение
Список использованной литературы



Введение
Переход к рыночным отношениям в экономике и научно-технический прогресс чрезвычайно ускорили темпы внедрения во все сферы социально-экономической жизни российского общества последних научных разработок в области информационных технологий. Достижение Россией высоких результатов в экономике и завоевание места полноправного партнера в мировой экономической системе в значительной степени зависит от того, каковы будут масштабы использования современных информационных технологий во всех аспектах человеческой деятельности, а также от того, какую роль будут играть эти технологии в повышении эффективности экономических взаимоотношений.
Предоставление кредитов является основной экономической функцией банков, осуществляемой для финансирования потребительских и инвестиционных целей предпринимательских фирм, физических лиц и государственных организаций. Переход России к рыночной экономике и вступление ее на международный финансовый рынок тесно связаны с развитием кредитных отношений, касающихся в первую очередь юридических лиц.
Одним из важнейших условий успешного управления банком кредитными ресурсами является оценка надежности предприятий - потенциальных заемщиков, а основополагающим показателем, определяющим эту надежность, является кредитоспособность, т.е. способность заемщика полностью и в срок рассчитаться по своим долговым обязательствам (основному долгу и процентам).
В настоящее время для минимизации риска и для определения кредитоспособности заемщика зарубежные банки уже давно используют специально разработанные для этих целей математические модели - так называемый кредитный скоринг; отечественные же банки до сих пор полагаются на субъективное мнение своих не всегда компетентных сотрудников, а в помощь им предлагают лишь такую известную простому пользователю персонального компьютера программу, как Microsoft Excel.
Целью дипломной работы является демонстрация разработки перспективной методики для определения надежности потенциального заемщика банка (юридического лица), основанной на нейросетевых технологиях и позволяющей существенно повысить эффективность работы любой кредитной организации.
Одновременно с развитием теоретических подходов для создания адекватных моделей поведения рынка, в западных странах и США происходило активное внедрение новых интеллектуальных компьютерных технологий в практику принятия финансовых и инвестиционных решений: вначале в виде экспертных систем и баз знаний, а затем с конца 80-х - нейросетевых технологий.
Начало исследования методов обработки информации, называемых сегодня нейросетевыми, было положено несколько десятилетий назад. С течением времени интерес к нейросетевым технологиям то ослабевал, то вновь возрождался. Такое непостоянство напрямую связано с практическими результатами проводимых исследований.
На российском финансовом рынке нейросетевые компьютерные технологии появились всего несколько лет назад. Изучение литературы за этот период показало, что ни в одном из источников не содержится подробного описания (с указанием достигнутых результатов) эффективного применения нейросетевых компьютерных технологий для прогнозирования динамики фондового рынка в среднесрочной перспективе. Большинство публикаций (подавляющее большинство из них - в периодической печати) сводится к описанию возможностей нейронных сетей и их потенциальных преимуществ перед другими компьютерными технологиями. Причем большая часть выводов в этих работах сделана на основе результатов применения нейросетей на западных рынках.
Основной вклад в развитие теории нейрокомпьютинга и его применения в финансовой сфере внесли ученые стран Запада и США. Это прежде всего: В.-М. ван ден Берг, Д.-Э. Бэстенс, П. Вербос, Л. Вилентурф, Д. Вуд, В. МакКаллох, В. Пите, М. Редмиллер, Ф. Розенблат, Дж. Хопфилд и др. Необходимо отметить также работы отечественных ученых, занимающихся разработкой и внедрением нейросетевых технологий в области экономики, таких как: А. Ежов, Б. Одинцов, А. Романов, С. Шумский и др.
На сегодняшний день возможности нейросетевых технологий используются во многих отраслях науки, начиная от медицины и астрономии, заканчивая информатикой и экономикой. Между тем далеко не все потенциальные возможности нейросетевых методов изучены, но одними из их свойств являются возможности распознавания и классификации образов, работы с большими массивами зашумленных данных, аппроксимация и выявление неочевидных зависимостей в данных финансовых временных рядов. На основе этих свойств нейросетевых архитектур можно сделать вывод о значительном преимуществе их использования для анализа и прогнозирования динамик финансовых рядов, в частности фондового рынка.
Объектом исследования выступает кредитная система России.
Предметом исследования являются нейрокомпьютерные технологии и их использование для оценки кредитоспособности предприятий.

Список литературы Заключение
Нейросетевые технологии в отличие от экспертных систем предназначены для воспроизведения неосознанных мыслительных усилий человека (например, человек плохо знает, как он распознает цвет предмета). Такого рода технологии используются для распознавания каких-либо событий или предметов. С их помощью можно воспроизвести многочисленные связи между множеством объектов. Принципиальное отличие искусственных нейросетей от обычных программных систем, например экспертных, состоит в том, что они не требуют программирования. Они сами настраиваются, т.е. обучаются тому, что требуется пользователю. Известны следующие сферы применения нейросетей: экономика и бизнес - предсказание поведения рынков, предсказание банкротств, оценка стоимости недвижимости, автоматическое рейтингование, оценка кредитоспособности, прогнозирование курса валют; медицина - обработка медицинских изображений, диагностика; автоматизация производства - оптимизация режимов производственного процесса, диагностика качества продукции, предупреждение аварийной ситуации; политические технологии - обобщение социологических опросов; безопасность и охранные системы - системы идентификации личности, распознавание автомобильных номеров и аэрокосмических снимков; геологоразведка - анализ сейсмических данных, оценка ресурсов месторождений.
В данной дипломной работе была рассмотрена тема потребительского кредитования в РФ с позиции проблем, возникающих у банков при освоении данного рынка, в основном касающиеся правовых аспектов и аспектов снижения риска. Также было продемонстрировано решение проблем в сегодняшней действительности при помощи инструментов Data Mining платформы Deductor. В рамках данной задачи был реализован сценарий, заключающий в себе консолидацию данных из сторонней системы, прогон данных через построенную модель, экспорт результатов оценки кредитоспособности на сторону.
Основные преимущества системы:
• Гибкая интеграция с любыми сторонними системами, т.е. получение информации для анализа и перенос результатов не вызывает проблем.
• Консолидация информации о заемщиках в специальном хранилище данных, т.е. обеспечение централизованного хранения данных, непротиворечивости, а также обеспечение всей необходимой поддержки процесса анализа данных, оптимизированного доступа, автоматического обновления данных, использование при работе терминов предметной обрасти, а не таблиц баз данных.
• Широкий спектр инструментов анализа, т.е. обеспечение возможности эксперту выбрать наиболее подходящий метод на каждом шаге обработки. Это позволит наиболее точно формализовать его знания в данной предметной области.
• Поддержка процесса тиражирования знаний, т.е. обеспечение возможности сотрудникам, не разбирающимся в методиках анализа и способах получения того или иного результата получать ответ на основе моделей, подготовленных экспертом. Так сотрудник, оформляющий кредиты, должен ввести данные по потребителю и система автоматически выдаст решение о выдачи кредита или об отказе.
• Поддержка групповой обработки информации, т.е. обеспечение возможности дать решение по списку потенциальных заемщиков. Из хранилища автоматически выбираются данные по лицам, заполнившим анкету вчера (или за какой угодно буферный период), эти данные прогоняются через построенную модель, а результат экспортируется в виде отчета (например, в виде excel файла), либо экспортируется в систему автоматического формирования договоров кредитования или писем с отказом в кредите. Это позволит сэкономить время и деньги.
• Поддержка актуальности построенной модели, т.е. обеспечение возможности эксперту оценить адекватность текущей модели и, в случае каких либо отклонений, перестроить ее, используя новые данные.
Таким образом, для эффективного формирования кредитного портфеля банкам необходимо взять на вооружение передовые технологии добычи знаний и применить их для оценки потенциальных заемщиков. Благодаря этому можно будет не бояться предстоящей конкуренции на этом рынке. Подготовка решения данного вопроса сейчас позволит обкатать саму процедуру и в дальнейшем избежать ошибок и расходов в связи с массовым применением таких подходов в дальнейшем.



Список использованной литературы:
1. В.П.Дьяконов, В.В. Круглов. Matlab 6.5 SPI1/7/7 SP1/7 SP2 + Simulink 5/6. Инструменты искусственного интеллекта и биоинформатики. Сер. «Библиотека профессионала».- М.: СОЛОН-ПРЕСС, 2006
2. Потемкин В.Г. Инструментальные средства MATLAB. Москва: Диалог – МИФИ, 2000
3. Головко В.А. Нейроинтеллект: Теория и применения. Книга 1. Организация и обучение нейронных сетей с прямыми и обратными связями - Брест:БПИ, 1999, - 260с.
4. Головко В.А. Нейроинтеллект: Теория и применения. Книга 2. Самоорганизация, отказоустойчивость и применение нейронных сетей - Брест:БПИ, 1999, - 228с.
5. Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика, 1992 - 184с.
6. Б.М.Владимирский. Нейронные сети как источник идей и инструмент моделирования процессов самоорганизации и управления // Экономический вестник Ростовского государственного университета. 2006. Т. 4. № 4. С. 142-144.
7. В. П. Боровиков, Г. И. Ивченко Учебник по математической статистике с упражнениями в системе STATISTICA
8. Автоматизированные информационные технологии: Учебное пособие Под ред. Т.В. Воропаевой, В.Б. Либермана, А.И. Никифорова. – М.: Финансовая академия 2002 г.
9. Автоматизированные информационные технологии в экономике: Учебник для вузов. Под ред. Г.А. Титаренко. – М.: ЮНИТИ, 1998.
10. Информатика: Учебник 4-е изд./Под ред. Н.В.Макаровой –М.:Финансы и статистика, 2001.
11. Компьютерные системы и сети: Учеб. пособие/ В.П. Косарев и др. /Под ред. В.П. Косарева и Л.В. Еремина.-М.: Финансы и статистика, 2001.
12. С.В.Маклаков «BPwin и ERwin CASE-средства разработки информационных систем». - М.: "ДИАЛОГ-МИФИ", 2000.
13. Э.Г. Дадян «Современные Базы Данных: основы». Учебно-методическое пособие в двух частях. Часть 1, 2004.
14. Э.Г. Дадян «Современные Базы Данных: практические задания». Учебно-методическое пособие в двух частях. Часть 2, 2004.
15. Эдуард Пройдаков «Что такое Data Mining?»,PC Week/RE 99/26, электронный вариант.
16. Э.Г. Дадян, электронная лекция-презентация по курсу «Информационные технологии в экономике» раздел «Временные ряды», 2005.
17. Э.Г. Дадян, электронная лекция-презентация по курсу «Информационные технологии в экономике» раздел «OLAP, Data mining, KDD технологии», 2005.
18. Э.Г. Дадян, электронная лекция-презентация по курсу «Информационные технологии в экономике» раздел «Нейронный анализатор», 2005.
Цена: Договорная