Название Алгебра и ее применение
Количество страниц 56
ВУЗ Таврический Национальный Университет им. В.И. Вернадского
Год сдачи 2009
Содержание Введение……………………………………………………………………………..4
Глава I. Основные понятия и определения…………………………………….6
§ 1. * - алгебры……………………………………………………………………...6
1.1. Определение * - алгебры……………………………………………………….6
1.2. Примеры…………………………………………………………………………7
1.3. Алгебры с единицей…………………………………………………………….7
1.4. Простейшие свойства * - алгебр……………………………………………….9
1.5. Гомоморфизм и изоморфизм алгебр…………………………………………11
§ 2. Представления ……………………………………………………………….13
2.1. Определение и простейшие свойства представлений……………………….13
2.2. Прямая сумма представлений ………………………………………………..15
2.3. Неприводимые представления………………………………………………..16
2.4. Конечномерные представления……………………………………………….19
2.5. Интегрирование и дезинтегрирование представлений ……………………..20
§ 3. Тензорные произведения……………………………………………………26
3.1. Тензорные произведения пространств……………………………………….26
3.2. Тензорные произведения операторов………………………………………..28
Глава II. Задача о двух ортопроекторах………………………………………..31
§ 1. Два ортопроектора в унитарном пространстве…………………………..31
1.1. Постановка задачи……………………………………………………………..31
1.2. Одномерные *-представления *-алгебры P2 ……………………………….31
1.3. Двумерные *-представления *-алгебры P2 ……………………………….32
1.4. n-мерные *-представления *-алгебры P2 …………………………………35
1.5. Спектральная теорема…………………………………………………………37
§ 2. Два ортопроектора в сепарабельном гильбертовом пространстве……39
2.1. Неприводимые *-представления *-алгебры P2 …………………………...39
2.2. Спектральная теорема…………………………………………………………41
Глава III. Спектр суммы двух ортопроекторов ……………………………...45
§ 1. Спектр суммы двух ортопроекторов в унитарном пространстве……...45
1.1. Спектр ортопроектора в гильбертовом пространстве……………………….45
1.2. Постановка задачи……………………………………………………………..45
1.3. Спектр в одномерном пространстве………………………………………….45
1.4. Спектр в двумерном пространстве……………………………………….…..46
1.5. Спектр в n-мерном пространстве……………………………………………..47
1.6. Линейная комбинация ортопроекторов………………………………………49
§ 2. Спектр суммы двух ортопроекторов в сепарабельном
гильбертовом пространстве …………………………………………………….52
2.1. Спектр оператора А = Р1 +Р2 …………………………………………………52
2.2. Спектр линейной комбинации А = аР1 + bР2 (0<аЗаключение………………………………………………………………………..55
Литература ………………………………………………………………………..56
Список литературы 1. Ахиезер Н.И., Глазман И.М. Теория линейных операторов в гильбертовом пространстве, М., Наука, 1966.
2. Березенский Ю.М., Ус Г.Ф., Шефтель З.Г. Функциональный анализ, К., Выща школа, 1990.
3. Браттели У., Робинсон Д. Операторные алгебры и квантовая статистическая механика: С*- W* -алгебры. Группы симметрий. Разложение состояний., М., Мир, 1982.
4. Диксмье Ж. С*-алгебры и их представления. М., Наука, 1974.
5. Кириллов А.А. Элементы теории представлений. М., Наука, 1978.
6. Кужель А.В. Алгебры конечного ранга, С. СГУ, 1979.
7. Ленг С. Алгебра. М., Мир, 1968.
8. Мерфи Д. С*-алгебры и теория операторов. М., Мир, 1998.
9. Наймарк М.А. Нормированные кольца. М., Гостехиздат, 1956.
10. Рудин У. Функциональный анализ. М., Мир, 1975.
11. NishioK, Linear algebra and its applications 66: 169-176, Elsevier Science Publishing Co., Inc., 1985.
12. Samoilenko Y.S., Representation theory of algebras, Springer, 1998.
Цена: Договорная