Рабочая программа Наглядная геометрия


Пояснительная записка
Основой данной рабочей программы по наглядной геометрии для 5-6-х классов является авторская программа «Математика. Наглядная геометрия» В.А. Панчищиной, Э.Г. Гельфман. В примерной программе, разработанной в рамках ФГОС второго поколения, появился раздел "Наглядная геометрия". Пропедевтический курс изучения геометрии необходимо начинать с 5 класса, так как по окончании начальной школы у учащихся объёмные представления более развиты, чем плоскостные.
Данный курс дает возможность получить непосредственное знание некоторых свойств и качеств важнейших геометрических понятий, идей, методов, не нарушая гармонию внутреннего мира ребенка. Соединение этого непосредственного знания с элементами логической структуры геометрии не только обеспечивает разностороннюю пропедевтику систематического курса геометрии, но и благотворно влияет на общее развитие детей, т.к. позволяет использовать в индивидуальном познавательном опыте ребенка различные составляющие его способностей. Программа основана на активной деятельности детей, направленной на зарождение, накопление, осмысление и некоторую систематизацию геометрической информации. Хотя в 5-6 классах обучение и остается наглядным, но расширяется круг изучаемых геометрических фигур, и начинается целенаправленная работа по формированию навыков дедуктивного мышления. Особое внимание уделяется формулировкам выводов из наблюдений. Появляются простейшие дедуктивные умозаключения, формируется общее положительное отношение к предмету геометрии, а также высокая познавательная активность. Раннее изучение геометрии окажет положительное повлияет на развитие пространственного воображения, интереса к предмету в целом.
Цели курса “Наглядная геометрия”: через систему задач организовать интеллектуально-практическую и исследовательскую деятельность учащихся, направленную на:
- развитие пространственных представлений, образного мышления, изобразительно графических умений, приемов конструктивной деятельности, умений преодолевать трудности при решении математических задач, геометрической интуиции, познавательного интереса учащихся, развитие глазомера, памяти обучение правильной геометрической речи;
- формирование логического и абстрактного мышления, формирование качеств личности (ответственность, добросовестность, дисциплинированность, аккуратность, усидчивость).
Задачи курса “Наглядная геометрия”:
- Вооружить учащихся определенным объемом геометрических знаний и умений, необходимых им для нормального восприятия окружающей деятельности. Познакомить учащихся с геометрическими фигурами и понятиями на уровне представлений, изучение свойств на уровне практических исследований, применение полученных знаний при решении различных задач. Основными приемами решения задач являются: наблюдение, конструирование, эксперимент.
- Развитие логического мышления учащихся через решение соответствующих задач, как правило, “в картинках”.
- На занятиях наглядной геометрии предусмотрено решение интересных головоломок, занимательных задач, бумажных геометрических игр и т.п. Этот курс поможет развить у ребят смекалку и находчивость при решении задач.
- Приобретение новых знаний учащимися осуществляется в основном в ходе их самостоятельной деятельности. Среди задачного и теоретического материала акцент делается на упражнения, развивающие “геометрическую зоркость”, интуицию и воображение учащихся. Уровень сложности задач таков, чтобы их решения были доступны большинству учащихся.
Изучение курса реализуется в течение двух учебных лет через внеурочную деятельность, каждый год завершается контрольной работой, которая содержит задания по всем темам.
Данная учебная программа по наглядной геометрии для 5-6- х классов рассчитана на 34 часа: в 5 классе - 17 часов; в 6 классе — 18 часов.
Личностные, метапредметные и предметные результаты освоения курса
1) На уровне личностных результатов ставится цель – сформировать у обучающихся определенные личностные качества:- ответственное отношение к учебным поручениям и учебной работе, а также уважительное отношение к знаниям и людям, добывающим новые знания;
- готовность учиться самостоятельно;
- позитивная и адекватная самооценка, а также осознание себя как успешного ученика по отношению к изучению геометрии;
- доброжелательное и уважительное отношение к другому человеку, умение работать в режиме диалога, адекватно воспринимать другое мнение.
2) На уровне метопредметных результатов ставится цель – способствовать возможности усвоения обучающимися познавательных, регулятивных и коммуникативных универсальных учебных действий.
- принимать учебную проблемную ситуацию и рассматривать ее как начальный этап для последующего обсуждения и разрешения;
- планировать и корректировать собственные учебные действия;
- находить и исправлять ошибки, объяснять причины ошибок (своих собственных и допущенных другими);
- освоить навыки самоконтроля;
- осознавать, что задача может иметь несколько способов решения и что к правильному результату можно прийти разными путями (готовность к вариативной мыслительной деятельности);
- сравнивать разные способы решения задачи, выбирать рациональный (удобный) способ вычисления и поиска решения;
- использовать предметно-практический, образный и знаково-словесный способы кодирования информации;
- получать следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
- выстраивать аргументацию при доказательстве и в диалоге;
- распознавать логически некорректные рассуждения;
- прогнозировать результат вычисления, планировать свою деятельность при решении задач;
- работать с текстом (выделять главные идеи текста, составлять конспекты, искать в тексте нужную информацию, самостоятельно порождать тексты, работать с разными типами текстов – сюжетными, справочными, объяснительными, гипертекстами и др.);
- освоить грамотную математическую речь, в том числе для целей коммуникации;
- использовать электронные ресурсы с учетом индивидуальных образовательных потребностей (формирование элементов ИКТ-компетенции).
3) На уровне предметных результатов ставится цель – сформировать у обучающихся знания:- о некоторых геометрических объектах и их свойствах, в том числе важных для практики;
- о том, что геометрические формы являются идеализированными образами реальных объектов;
- о первоначальных сведениях о плоских фигурах, объемных телах, некоторых геометрических соотношениях;
- о том, как использовать геометрический язык и геометрическую символику для описания предметов окружающего мира;
- о том, как проводить несложные рассуждения и обоснования в процессе решения задач, предусмотренных содержанием курса;
сформировать у обучающихся следующие навыки и умения:
- владеть практическими навыками использования геометрических инструментов для построения геометрических фигур и измерения их основных элементов;
- научиться решать простейшие задачи на построение, вычисление, доказательство;
- уметь изображать фигуры на нелинованной бумаге;
- изображать точки с заданными координатами на координатной прямой, на координатной плоскости;- пользоваться геометрическим языком для описания предметов окружающего мира;
- распознавать некоторые геометрические фигуры;
- изображать некоторые геометрические фигуры;
- находить стороны и углы треугольников, длины ломаных;
Сформировать у обучающихся готовность применять знания и умения в практической деятельности и повседневной жизни:
- решать несложные практические расчетные задачи;
- выполнять устную прикидку и оценку результата вычислений; выполнять проверку результата вычисления с использованием различных приемов;
- выполнять расчеты по формулам;
- описывать реальные ситуации на языке геометрии;
- выполнять простейшие построения с помощью инструментов (линейка, угольник, циркуль, транспортир);
- решать практические задачи с использованием геометрических понятий (длина, площадь, объем и др).
Содержание учебного курса
Введение. Поиск геометрических свойств.
Начала геометрии: простейшие геометрические задачи. Отрезок. Прямая. Луч. Графические диктанты и координаты. Исследование плоскости и заполнение пространства. Действия с отрезками.
Окружность и круг. Конструкции и виды. Отрезки и окружности на узорах.
Угол. Сравнение углов. Измерение углов. Многоугольники и развертки.
Сравнение рисунков на странице.
Площадь. Объем. Объем прямоугольного параллелепипеда. Задачи на нахождение площади и объема.
Мир геометрии: оригинальные конструкции и строгие законы геометрии.
Ломаная. Ломаные и куб. Ломаные на узорах.
Об основных фигурах и законах геометрии. Геометрические конструкции из прямых на плоскости. Взаимное расположение прямых и плоскостей в пространстве.
Прямоугольная система координат на плоскости. Параллельные прямые и четырехугольники. Многоугольники и фигуры вращения.
Геометрия закономерностей. Движение фигур. Симметрия орнаментов.
Тематическое планирование
№ п/пТема Кол-во часов Виды деятельности
5 класс
Начала геометрии: простейшие геометрические задачи
Введение. Поиск геометрических свойств. 4 1 Предметы и геометрические фигуры 1 Формирование начальных представлений о цилиндре, конусе, шаре, призме и пирамиде на основе наблюдения, предметно-практической деятельности, имитации моделирования с помощью электронных ресурсов. Развитие восприятия пространства, пространственных представлений и воображения учащихся. Развитие умений обобщать и классифицировать.
2 Важные признаки геометрических фигур 1 3 Действия с различными конструкциями 1 Определение трех видов конструкций – вида спереди, вида сверху и вида слева. Составление конструкции по трем заданным видам.
4 Развертки 1 Глава 1. Отрезок и другие геометрические фигуры 4 5 Отрезок, прямая, луч
1 Построение и продолжение отрезка за его концы. Исследование взаимного расположения точек и отрезков. Построение прямой и луча. Формирование умения «читать чертеж» на уровне простого вычленения фигур.
6 Исследование плоскости и заполнение пространств 1 Формирование понятий:    - равных отрезков, длины отрезка.
Формирование умений:  - сравнивать отрезки, измерять отрезки и записывать результаты с помощью символов и знаков.
Формирование умений:  - переводить одни единицы измерения в другие,
- строить отрезки заданной длины.
Развитие пространственных представлений и мышления учащихся.
7-8 Действия с отрезками
- Сравнение отрезков
- Измерение отрезков
- «Пентамино» и рисунки из отрезков 2 Глава II. Окружность и круг. Угол 3 9 Окружность и круг. 1 Исследование окружности как геометрической фигуры на плоскости. Построение окружности с помощью циркуля. Знакомство с различными элементами окружности и круга. Построение и исследование различных конфигураций из окружностей.
10-11 Угол. Сравнение углов. Смежные и вертикальные углы
2 Знакомство с углом как геометрической фигурой на плоскости. Построение углов. Исследование и создание различных конфигураций из точек, лучей, углов на плоскости. Знакомство с понятием смежных и вертикальных углов.
12 Многоугольники и развертки. Правильные многоугольники. 1 Знакомство  с понятием правильного многоугольника; нахождение алгоритма построения. Построение правильных многоугольников с помощью циркуля и линейки.
Глава III. Площадь и объем 4 13 Площадь. Измерение площади. Площадь многоугольника
1 Формирование понятия площади плоских фигур. Знакомство с основными свойствами площадей многоугольника. Введение формулы площади прямоугольника и квадрата.
14 Объем. Объем прямоугольного параллелепипеда. Измерение объема. Объем и конструкции из кубиков. 1 Систематизация знаний об измерении геометрических величин. Углубление представлений об измерении объема. Знакомство с основными свойствами объема. Нахождение объема конструкции из кубиков.
15-16 Задачи на нахождение площади и объема 2 Применение знаний для нахождения площадей и объемов фигур.
17 Повторение. Итоговая работа 1 ИТОГО 17 6 класс
Мир геометрии: оригинальные конструкции и строгие законы геометрии
Глава I. Отрезки и ломаные 3 1 Ломаные и многоугольники 1 Знакомство с понятием  ломаной и её элементов, построение ломаных заданной конфигурации и длины, знакомство с выпуклыми и невыпуклыми многоугольниками;
2 Ломаные и куб 1 Рассмотрение многоугольника как ломаной определенного вида; построение многоугольников заданной конфигурации и  периметра; исследование  различных конструкций из ломаных и многоугольников;
3 Ломаные на узорах 1 Анализ и построение  древних орнаментов по рисункам или схемам; создание собственных узоров по мотивам национальных орнаментов.
Глава II. Прямые и плоскости 5 4 Основные фигуры на плоскости и в пространстве 1 Знакомство с некоторыми аксиомами геометрии; исследование конфигураций из основных геометрических фигур на плоскости; построение пространственной ломаной по трем видам, заданным на чертеже.
5 Пересекающиеся прямые 1 Анализ взаимного расположения двух прямых на плоскости; исследование вертикальных углов на плоскости; нахождение величины углов, образованных двумя или тремя пересекающимися  прямыми на плоскости.
6 Параллельные прямые 1 Знакомство с определением и способом построения параллельных прямых; использование признака параллельности прямых в задачах на вычисление и построение.7 Прямые в пространстве 1 Исследование различных случаев взаимного расположения двух  прямых в пространстве; решение задач на поиск параллельных, пересекающихся, скрещивающихся прямых в пространстве.
8 Прямые и плоскости в пространстве 1 Исследование различных случаев взаимного расположения  прямой и плоскости,  двух  плоскостей  в пространстве; решение задач на определение взаимного расположения прямой и плоскости  или двух плоскостей в пространстве.
Глава III. Перпендикулярность и параллельность на плоскости и в пространстве 6 9 Прямоугольная система координат на плоскости 1 Введение прямоугольной системы координат на плоскости; определение координат точки и построение точки по её координатам на координатной плоскости.
10 Геометрические фигуры на координатной плоскости 1 Построение на координатной плоскости прямоугольного, остроугольного, тупоугольного треугольников по двум заданным вершинам; построение прямоугольников, удовлетворяющих некоторым условиям относительно их размеров и расположения на координатной плоскости; поиск и построение на координатной плоскости треугольников по описанию числовых характеристик их вершин.
11-12 Параллельные прямые и четырехугольники 2 Знакомство с определением, некоторыми свойствами и признаками параллелограмма, прямоугольника, ромба, квадрата и  трапеции; решение задач на построение  многоугольников на плоскости; решение задач на построение четырехугольников  на координатной плоскости.
13-14 Многогранники и фигуры вращения 2 Знакомство с общими признаками  многогранников; рассмотрение призмы и пирамиды как многогранников определенного вида.     
Исследование цилиндра, конуса и шара как геометрических фигур пространства.
Глава IV. Узоры симметрии 4 15 Движение фигур 1 Обсуждение различных проявлений принципа симметрии в природе и человеческой деятельности; знакомство с алгоритмом построения образа точки при заданном повороте; знакомство с алгоритмом построения образа точки при заданном параллельном переносе.
16 Линейные орнаменты 1 Выявление закономерностей образования линейных орнаментов; построение линейных орнаментов на листе в клетку; систематизация способов ритмизации линейного орнамента; определение мотива и элементарной ячейки заданных орнаментов.
17 Сетчатые (плоские) орнаменты. Паркеты 1 Знакомство с типами сеток для построения сетчатых (плоских) орнаментов; рассмотрение правильных и полуправильных паркетов; создание узоров  на паркете из многоугольников с помощью движения фигур.
18 Повторение. Итоговая работа. 1 ИТОГО 18 Учебно-методический комплекс:
Книга «Математика: наглядная геометрия» (учебное пособие для 5-6 классов общеобразовательных учреждений / [В.А. Панчищина, Э.Г. Гельфман, В.Н. Ксенева и др.] – М.: Просвещение, 2010. – 175 с.);
Тетрадь «Наглядная геометрия: рабочая тетрадь по математике. 5 класс. Часть 1» / В.А. Панчищина – Томск: изд-во Томского государственного педагогического университета, 2007.
Тетрадь «Наглядная геометрия: рабочая тетрадь по математике. 5класс. Часть 2» / В.А. Панчищина – Томск: изд-во Томского государственного педагогического университета, 2007.
Электронное приложение – электронные образовательные ресурсы к учебникам в Единой коллекции (www.school-collektion.edu.ru)программа) основного общего образования по математике для 5-6 классов.Материально-техническое обеспечение:
- Компьютер;
- Мультимедийный проектор;
- Экран.
- Магнитная доска;
- Комплект чертежных инструментов;
- Комплект планиметрических и стереометрических тел;
- Комплекты для моделирования геометрических тел.
Планируемые результаты изучения курса
В результате изучения курса учащиеся должны:
осознать, что геометрические формы являются идеализированными образами реальных объектов;
усвоить первоначальные сведения о плоских фигурах, объемных телах, некоторых геометрических соотношениях;
научиться использовать геометрический язык и геометрическую символику для описания предметов окружающего мира;
проводить несложные рассуждения и обоснования в процессе решения задач, предусмотренных содержанием курса;
владеть практическими навыками использования геометрических инструментов для построения геометрических фигур и измерения их основных элементов;
научиться решать простейшие задачи на построение, вычисление, доказательство;
уметь изображать фигуры на нелинованной бумаге;
Знать:
Простейшие геометрические фигуры (прямая, отрезок, луч, многоугольник, квадрат, треугольник,, угол), пять правильных многогранников (тетраэдр, куб, октаэдр, додекаэдр, икосаэдр), свойства геометрических фигур.Уметь:
изображать геометрические чертежи согласно условиям задачи;
строить простейшие геометрические фигуры на плоскости и в пространстве (изображение видимых и невидимых линий);
определять геометрическую фигуру по рисунку, узнавать его по развертке, видеть свойства конкретного геометрической фигуры;
пользоваться линейкой и угольником для построения параллельных и перпендикулярных прямых;
строить точку, симметричную данной, указывать ось симметрии;
изображать простейшие геометрические фигуры по их описанию;
анализировать свойства геометрических фигур;
использовать теоретические знания в практической работе;
складывать из бумаги простейшие фигурки – оригами;
строить развертки фигур.
Приобрести опыт:
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
использования теоретических знаний в жизненных ситуациях;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Список литературы
Учебное пособие «Математика: наглядная геометрия» (учебное пособие для 5-6 классов общеобразовательных учреждений / [В.А. Панчищина, Э.Г. Гельфман, В.Н. Ксенева и др.] – М.: Просвещение, 2010. – 175 с.);