Проектная работа Секрет происхождения арабских цифр ученика 5 класса Базунова Евгения


МОУ Покровская СОШ МО «Цильнинский район» Ульяновской области
Проектно – исследовательская работа
«Секрет происхождения арабских цифр»
Базунов Евгений,
ученик 5 класса
МОУ Покровской СОШ.
Научный руководитель -
Ураксина Евгения Викторовна,
учитель математики
МОУ Покровской СОШ.
с. Покровское
2015 год
Оглавление
ВВЕДЕНИЕ………………………………………..…………………………………………….….… 3
ГЛАВА 1. Что такое число?……….……………………….………………………………... 4
ГЛАВА 2. Цифры древних народов
Цифры в Древнем Египте ………………….……………………………………………….. 5
Цифры в Вавилоне ………………………………….………………………………………..… 6
Цифры в Древней Греции…………………………..…..……………………………..….. 7
Римская нумерация………………………………………..………………………………..… 8
Славянская кириллическая нумерация ……………….………………………..….. 9
ГЛАВА 3. Секрет происхождения арабских цифр …………………………..… 11
ГЛАВА 4. Организация и проведение исследования ………………………. 14
Заключение ………………………………………………...……………………………….…… 16
Литература ………………………………………………………….……………………………. 17
Приложение
Приложение 1 ………………………………………………………………………………….. 18
Приложение 2 ………………………………………………………………………………….. 20
Приложение 3 ………………………………………………………………………………….. 22

ВВЕДЕНИЕ
«Всё есть число»- говорили пифагорейцы. Я абсолютно с ними согласен. И раньше и сейчас человека окружают числа: стоимость покупки, номер телефона, дата рождения, отметки в школе и т.п. Числа составляются из цифр. Как возникли цифры, каковы были варианты написания цифр у разных народов, что общего в их написании, каковы правила составления чисел из цифр?
Эти вопросы всегда интересовали меня. А однажды я задумался над следующей проблемой: почему мы, люди, живущие в России, пользуемся арабскими цифрами? И насколько «арабскими» являются арабские цифры? Так как я люблю и математику, и историю, то я решил посвятить свой проект ответам на эти вопросы.
Итак, цель моего проекта – выяснить секрет происхождения арабских цифр и причину их долгожительства.
Для достижения цели мне необходимо решить следующие задачи:
С помощью литературных источников и Интернета познакомиться с цифрами разных народов.
Найти информацию о происхождении арабских цифр.
Сравнить различные системы счисления, чтобы разобраться, почему современные люди пользуются именно арабскими цифрами.
Исследовать уровень знаний окружающих меня людей о цифрах, которыми все они пользуются.
Создать презентацию, в которой отразить результаты моей проектно – исследовательской работы.
Таким образом, объектом моего исследования стали цифры разных народов, древние цифры, современные цифры.
Приступая к своей работе, я выдвигаю гипотезу: в происхождении арабских цифр есть некая тайна, а пользуемся мы ими до сих пор, так как они – самые удобные.
Основные методы исследования: анализ литературы, сравнение, опрос учащихся, ресурсы из интернета, анализ и обобщение полученных в ходе исследования данных.

ГЛАВА 1
Что такое число?

Число́ — основное понятие математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей. Письменными знаками для обозначения чисел служат цифры, а также символы математических операций. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа с развитием науки значительно расширилось.
Понятие числа возникло в глубокой древности, примерно 4 5 тысяч лет тому назад. Из практической потребности людей и развивалось в процессе развития человечества. Область человеческой деятельности расширялась и соответственно, возрастала потребность в количественном описании и исследовании. Сначала понятие числа определялось теми потребностями счёта и измерения, которые возникали в практической деятельности человека, всё более усложняясь. Позже число становится основным понятием математики, и потребности этой науки определяют дальнейшее развитие этого понятия.
Считать предметы человек умел ещё в глубокой древности, тогда и возникло понятие натурального числа. На первых ступенях развития понятие отвлечённого числа отсутствовало. В те времена человек мог оценивать количества однородных предметов, называемых одним словом, например "три человека", "три топора". При этом использовались разные слова "один" "два", "три" для понятий "один человек", "два человека", "три человека" и "один топор", "два топора", "три топора". Это показывает анализ языков первобытных народностей. Такие именованные числовые ряды были очень короткими и завершались неиндивидуализированным понятием "много". Разные слова для большого количества предметов разного рода существуют и сейчас, такие, как "толпа", "стадо", "куча". Примитивный счёт предметов заключался «в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона», которым у большинства народов являлись пальцы ("счёт на пальцах"). Это подтверждается лингвистическим анализом названий первых чисел. На этой ступени понятие числа становится не зависящим от качества считаемых объектов.
Несколько десятков лет назад учёные-археологи обнаружили стойбище
древних людей. В нём они нашли волчью кость, на которой 30 тысяч лет тому назад какой-то охотник нанёс 55 зарубок. Видно, что, делая эти зарубки, он считал по пальцам.

Глава 2
Цифры древних народов.
Цифры в Древнем Египте
Первые написанные цифры, о которых мы имеем достоверные свидетельства, появились в Египте и Месопотамии около 5000 лет назад.
В Древнем Египте сформировалось скорописное иероглифическое письмо, месопотамские писцы использовали клинопись. Поэтому египетские первые цифры своей формой передавали природу всех окружающих предметов: животные, растения, предметы быта и т.д. Папирус Ринда (1650 г. до н.э.) и папирус Голенищева (1850 г. до н.э.) – числовые древнеегипетские документы — свидетельствуют о высоком культурном развитии народа. Месопотамская клинопись запечатлена на глиняных табличках, на которых цифры представлены небольшими клиньями, повернутыми в разные стороны соответственно своему значению. И в египетских, и в месопотамских системах счисления есть цифры от 1 до 10, особые метки для обозначения десятков, сотен и тысяч, и ноль, который обозначали выделенным пустым местом. Числа древнего Египта построены грамотно и логично. Рационализм и четкость отличают эти системы счисления от аналогичных попыток других народов. Цифры значением меньше десяти обозначались ׀. Например, цифра 6 выглядела как ׀׀׀׀׀׀. Число 10 обозначалось перевернутой подковой в иероглифической системе и особым символом – в иератической. Сколько десятков в числе, столько и «подков». Иератическая система письменности предполагала для каждого числа, на десяток выше предыдущего, отдельный символ. Начиная от 100, это была стилизованная клюшка, над которой с каждой новой сотней ставили крохотную пометку.
В иероглифах все проще. Число 100 выглядело почти как арабская цифра 9, но египтяне назвали ее лотосом. Далее все аналогично: «лотоса», 300 – 3 и т.д.

Вы заметили, что в древнем Египте с самого начала сформировалась десятичная система? Однако, Месопотамия все же превзошла Египет, когда на ее территории обрел независимость и возвысился Вавилон. Там вырастала отдельная культура, вскормленная достижениями соседних завоеванных государств.
Цифры в Вавилоне
Числа древнего Вавилона мало отличались от месопотамских: те же клиновидные знаки служили для обозначения единиц — ˅, и десятков — ˃. Комбинация этих знаков применялась для обозначения чисел 11-59. Число 60 в письме выглядело как зеркальное отражение буквы «Г». 70 – Г˃, 80 — Г˃˃ и так далее, принцип ясен, клинопись не отличается гениальностью.

Основная ценность заключается в том, что один и тот же знак – обратите внимание – в зависимости от того, где он расположен в записи числа, имеет разное значение. Речь идет о поместном размещении знаков в системе счисления. Те же клиновидные знаки, указанные в разных разрядах, обладают разной значимостью. Поэтому Вавилонскую систему счисления с нулем принято называть позиционной. Математики могут с этим поспорить, потому что не найдено ни одного источника, в которой ноль располагался бы в конце числовой записи, что говорит об относительной позиционности.
Вавилонская система стала своеобразным трамплином, с которого человечество совершило прыжок на новый этап своего развития. Идея со временем попала в руки индусов. Они внесли свои коррективы, усовершенствовав систему счисления. Переняли идею итальянские торговцы, которые привезли ее в Европу вместе с товаром. Позиционная система счисления облетела весь мир, обогатив своим появлением не только математические науки, но и современный счет.
Цифры в Древней Греции
Греки применяли несколько способов записи чисел. В Древней Греции имели хождение две основных системы счисления -
аттическая (или геродианова ) и ионическая (она же александрийская или
алфавитная). При использовании ионической нумерации числа выражались буквами алфавита. Чтобы отличить число от слова, над буквами числа ставился специальный значок  -титло. Этот способ записи чисел применялся жителями Милета и Александрии. Афиняне для обозначения чисел пользовались первыми буквами слов-числительных:right0
    Г (Γέύτέ) - пять,
    Δ(Δέκά)- десять,
   Χ(Χιλιάό) - тысяча,
  Μ(Mυριάό) - десять тысяч,
  I, II, III, IIII -соответственно 1, 2 , 3, 4   ΔΔΔIIII      -   10+10+10+4=34
  С помощью этих цифр житель Древней Греции мог записывать любое, не очень большое, число. Великий греческий математик Диофант Александрийский записывал дроби примерно так, как приятно сейчас: числитель над знаменателем , но без черты. Это был один из способов записи дробей в Древней Греции.
Вторая принятая в Древней Греции ионическая система счисления -
алфавитная - получила широкое распространение в начале
Александрийской эпохи, хотя возникнуть она могла несколькими столетиями раньше, по всей видимости, уже у пифагорейцев. Чтобы отличить числа от слов, греки над соответствующей буквой ставили горизонтальную черту. Сходство греческой буквы О с современным
обозначением нуля может быть чем-то большим, чем случайное совпадение, но у нас нет точных данных, позволяющих утверждать это со всей определенностью. Запись алфавитными символами могла делаться в любом порядке, так как число получалось как сумма значений отдельных букв.
   Вплоть до VI века до н. э. греческая математика ничем не выделялась. Были, как обычно, освоены счёт и измерение. Греческая нумерация (запись чисел), как позже римская, была аддитивной, то есть числовые значения цифр складывались. Соответственно была устроена и счётная доска (абак) с камешками. Кстати, термин калькуляция(вычисление) происходит от calculus  — камешек. Особый дырявый камешек обозначал нуль.

В VI веке до н. э. начинается «греческое чудо»: появляются сразу две научные школы — ионийцы (Фалес Милетский, Анаксимен, Анаксимандр) и пифагорейцы. О достижениях ранних греческих математиков мы знаем в основном по упоминаниям позднейших авторов, преимущественно комментаторов Евклида, Платона и Аристотеля.
Римская нумерация
Римская система нумерации с помощью букв была распространена в Европе на протяжении двух тысяч лет. Только в позднем средневековье ее сменила более удобная для вычислений десятичная система цифр, заимствованная у арабов. Но, до сих пор римскими цифрами обозначаются даты на монументах, время на часах и (в англо-американской типографической традиции) страницы книжных предисловий. Кроме того, в русском языке римскими цифрами принято обозначать порядковые числительные.
Для обозначения чисел применялось 7 букв латинского алфавита: I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000. Промежуточные числа образовывались путем прибавления нескольких букв справа или слева. Сначала писались тысячи и сотни, затем десятки и единицы. Таким образом, число 24 изображалось как XXIV. Горизонтальная линия над символом означала умножение на тысячу.
Натуральные числа записываются при помощи повторения этих цифр. При этом, если большая цифра стоит перед меньшей, то они складываются (принцип сложения), если же меньшая - перед большей, то меньшая вычитается из большей (принцип вычитания). Последнее правило применяется только во избежание четырёхкратного повторения одной и той же цифры. Например, I, Х, С ставятся соответственно перед Х, С, М для обозначения 9, 90, 900 или перед V, L, D для обозначения 4, 40, 400. Например, VI = 5+1 = 6, IV = 5 - 1 = 4 (вместо IIII). XIX = 10 + 10 - 1 = 19 (вместо XVIIII), XL = 50 - 10 =40 (вместо XXXX), XXXIII = 10 + 10 + 10 + 1 + 1 + 1 = 33 и т.д.
Выполнение арифметических действий над многозначными числами в этой записи весьма неудобно. Система Римских цифр настоящее время не применяется, за исключением, в отдельных случаях, обозначения веков (XV век и т.д.), годов н. э. (MCMLXXVII т. д.) и месяцев при указании дат, порядковых числительных, а также иногда производных небольших порядков.
153924080010
Славянская кириллическая нумерация
Эта нумерация была создана вместе со славянской алфавитной системой для перевода священных библейских книг для славян греческими монахами братьями Кириллом и Мефодием в IX веке. Эта форма записи чисел получила большое распространение в связи с тем, что имела полное сходство с греческой записью чисел. До XVII века эта форма записи чисел была официальной на территории современной России, Республики Беларусь, Украины, Болгарии, Венгрии, Сербии и Хорватии. До сих пор православные церковные книги используют эту нумерацию.

Числа записывали из цифр так же слева, направо, от больших к меньшим. Числа от 11 до 19 записывались двумя цифрами, причем единица шла перед десятком.
Читаем дословно "четырнадцать" - "четыре и десять". Как слышим, так и пишем: не 10+4, а 4+10, - четыре и десять (или, например, 17 — сем-на-дцать). Числа от 21 и выше записывались наоборот, сначала писали знак полных десятков. Запись числа, использованная славянами аддитивная, то есть в ней используется только сложение.
Для того чтобы не перепутать буквы и цифры, использовались титла - горизонтальные черточки над числами, что мы видим на нашем рисунке. Для обозначения чисел больших, чем 900 использовались специальные значки, которые дорисовывались вокруг буквы. Так образовывались следующие большие числа:
Обозначение Название Значение
Тысяча 1000
Тьма 10 000
Легион 100 000
Леодр1 000 000
Ворон 10 000 000
Колода 100 000 000
Славянская нумерация просуществовала до конца XVII столетия, пока с реформами Петра I в Россию из Европы не пришла позиционная десятичная система счисления - арабские числа.
Интересный факт, что почти та же система использовалась и у греков. Именно этим объясняется то, что для буквы б не было цифрового значения. Хотя, ничего особенно удивительного здесь нет: кириллическая нумерация полностью скопирована с греческой. Близкие цифры были и у готов.
Глава 3
Секрет происхождения арабских чисел
История наших привычных «арабских» чисел очень запутана. Нельзя сказать точно и достоверно как они произошли. Одно точно известно, что именно благодаря древним астрономам, а именно их точным расчетам мы и имеем наши числа. Между II и VI веками н.э. индийские астрономы познакомились с греческой астрономией. Они переняли шестидесятеричную систему и круглый греческий нуль. Индийцы соединили принципы греческой нумерации с десятичной мультипликативной системой, взятой из Китая. Так же они стали обозначать цифры одним знаком, как было принято в древнеиндийской нумерации брахми. Блестящая Севильи перевел на латынь эту книгу, и индийская система счета широко распространилась по всей Европе.
Индийские цифры возникли в Индии не позднее V века. Тогда же было открыто и формализовано понятие нуля (шунья), которое позволило перейти к позиционной записи чисел.
Арабские и индо-арабские цифры являются видоизменёнными начертаниями индийских цифр, приспособленными к арабскому письму].
Индийскую систему записи широко популяризировал учёный Аль-Хорезми, автор знаменитой работы « HYPERLINK "https://ru.wikipedia.org/wiki/%D0%9A%D0%B8%D1%82%D0%B0%D0%B1_%D0%B0%D0%BB%D1%8C-%D0%B4%D0%B6%D0%B5%D0%B1%D1%80_%D0%B2%D0%B0-%D0%BB%D1%8C-%D0%BC%D1%83%D0%BA%D0%B0%D0%B1%D0%B0%D0%BB%D0%B0" \o "Китаб аль-джебр ва-ль-мукабала" Китаб аль-джебр ва-ль-мукабала», от названия которой произошёл термин «алгебра». Аль-Хорезми написал книгу «Об индийском счёте», способствовавшую популяризации десятичной позиционной системы записи чисел во всём Халифате, вплоть до Мусульманской Испании.  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D0%B3%D0%B8%D0%BB%D0%B0%D0%BD%D1%81%D0%BA%D0%B8%D0%B9_%D0%BA%D0%BE%D0%B4%D0%B5%D0%BA%D1%81" \o "Вигиланский кодекс" Вигиланский кодекс содержит первое упоминание и изображение арабских цифр (кроме нуля) в Западной Европе. Они появились через мавров в Испании около 900 года.
Арабские цифры стали известны европейцам в X веке. Благодаря тесным связям христианской Барселоны ( HYPERLINK "https://ru.wikipedia.org/wiki/%D0%91%D0%B0%D1%80%D1%81%D0%B5%D0%BB%D0%BE%D0%BD%D0%B0_(%D0%B3%D1%80%D0%B0%D1%84%D1%81%D1%82%D0%B2%D0%BE)" \o "Барселона (графство)" Барселонское графство) и мусульманской  HYPERLINK "https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B4%D0%BE%D0%B2%D0%B0_(%D0%98%D1%81%D0%BF%D0%B0%D0%BD%D0%B8%D1%8F)" \o "Кордова (Испания)" Кóрдовы (Кордовский халифат), HYPERLINK "https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D1%8C%D0%B2%D0%B5%D1%81%D1%82%D1%80_II_(%D0%BF%D0%B0%D0%BF%D0%B0_%D1%80%D0%B8%D0%BC%D1%81%D0%BA%D0%B8%D0%B9)" \o "Сильвестр II (папа римский)"Сильвестр II (папа римский с 999 по 1003 годы) имел возможность доступа к научной информации, которой не имел никто в тогдашней Европе. В частности, он одним из первых среди европейцев познакомился с арабскими цифрами, понял удобство их употребления по сравнению с римскими цифрами и начал пропагандировать их внедрение в европейскую науку. В XII веке книга Аль-Хорезми «Об индийском счёте» была переведена на латинский язык и сыграла очень большую роль в развитии европейской арифметики и внедрении индо-арабских цифр. Название «арабские цифры» образовалось исторически, из-за того, что именно арабы распространяли десятичную позиционную систему счисления. Цифры, которые используют в арабских странах, по начертанию сильно отличаются от используемых в европейских странах. В старых вавилонских текстах, датируемых 1700 годом до нашей эры, не встречается специального знака, обозначающего нуль, для его обозначения просто оставляли пустое место, более или менее выделенное.
Арабские цифры (шрифт без засечек)

Написание цифр
Написание арабских цифр состояло из отрезков прямых линий, где количество углов соответствовало величине знака. Вероятно, кто-то из арабских математиков когда-то предложил идею - связать числовое значение цифры с количеством углов в ее написании.
Посмотрим на арабские цифры и видим, что
0 - цифра без единого угла в начертании.
1 - содержит один острый угол.
2 - содержит два острых угла.
3 - содержит три острых угла (правильное, арабское, начертание цифры получается при написании цифры 3 при заполнении почтового индекса на конверте)
4 - содержит 4 прямых угла (именно этим объясняется наличие «хвостика» внизу цифры, никак не влияющего на ее узнаваемость и идентификацию)
5 - содержит 5 прямых углов (назначение нижнего хвостика - то же самое, что у цифры 4 - достройка последнего угла)
6 - содержит 6 прямых углов.
7 - содержит 7 прямых и острых углов (правильное, арабское, написание цифры 7 отличается от приведенного на рисунке наличием дефиса, пересекающего под прямым углом вертикальную линию посередине (вспомним, как мы пишем цифру 7), что дает 4 прямых угла и 3 угла дает еще верхняя ломаная линия)
8 - содержит 8 прямых углов.
9 - содержит 9 прямых углов (именно этим объясняется столь замысловатый нижний хвостик у девятки, который должен был достроить 3 угла, чтобы общее их число стало равно 9.


В современном мире мы пользуемся арабскими цифрами. Так как они более удобные по написанию. Их система называется десятеричной, для того чтобы написать число нам нужно всего лишь 10 цифр: 0 1 2 3 4 5 6 7 8 9. А не как у славян более 50. И с помощью этих цифр мы можем написать любое число без ограничения. Также благодаря нулю, придуманными мусульманами, написание стало намного легче. Поэтому в наши дни арабские цифры считаются самыми удобными и простейшими.

Также в интернете я нашёл интересную программу переводчик чисел Titlo_0.12.2. Подробно о ней вы можете узнать в Приложении.
ГЛАВА 4
Организация и проведение исследования
Исследование проводилось среди учеников 5 класса и интернет – опроса (Приложение 1) . Всего было опрошено 30 человек.
Учащимся и интернет - пользователям было предложено 4 вопроса:
1.Какими цифрами мы пользуемся в современном мире?
2. Откуда к нам пришли цифры?
3. Где зародилось понятие ноль?
4. Используя таблицу (Приложение 2) написания цифр разных народов, напишите цифры: 4, 10, 325, 543, на египетском (иероглифы), на вавилонском, на греческом, на римском, на славянском.
Результаты исследования:
Вопрос 1: Какими цифрами мы пользуемся в современном мире.
Глядя на диаграмму, мы видим, что большинство опрошенных не ошиблись и выбрали правильный ответ. В современном мире мы пользуемся арабскими цифрами.
Вопрос 2: Откуда к нам пришли цифры.
left226695 Со вторым вопросом опрошенные не справились. Большинство ответили, что цифры пришли к нам из Арабии. И только 10 человек выбрали правильный ответ: цифры пришли к нам из Индии.
Вопрос 3: Где зародилось понятие ноль.
На третий вопрос большая часть опрошенных ответили неверно, так как нуль был придуман в Индии. В процессе исследования, я заметил, что опрошенные не были уверены в правильном выборе ответа.
Вопрос 4: Используя таблицу (Приложение 2) написания цифр разных народов, напишите цифры: 4, 10, 325, 543, на египетском (иероглифы), на вавилонском, на греческом, на римском, на славянском.
Справились с написанием (из 30 участников).
Современные цифра. Египетские Вавилонские Греческие Римские Славян-
ские 4 26 27 25 30 12
10 17 19 30 23 15
325 7 14 17 8 11
543 11 7 5 11 6
Из данной таблицы мы видим, что самое трудное написание цифр- это славянское. Также, чем больше увеличивалось знаков в числе, тем сложнее становилось его написание.

Заключение
Целью моего проекта было выяснить секрет происхождения арабских цифр и причину их долгожительства. Для её достижения мне пришлось решать поставленные задачи. Вот что из этого получилось.
Задача №1 – с помощью литературных источников и Интернета познакомиться с цифрами разных народов. В ходе решения данной задачи я познакомился с цифрами Древнего Египта, Вавилона, древней Греции и Рима, не обошёл вниманием славянскую кириллическую нумерацию и, разумеется, арабские цифры. Думаю, в рамках данного проекта, задача решена на 100%. И очень здорово, что работу в данном направлении можно продолжать, ведь существует ещё множество различных нумераций, как изученных, так и не изученных. В дальнейшем мне хотелось бы подробнее изучить цифры великой цивилизации майя.
Задача №2 - найти информацию о происхождении арабских цифр. С этой задачей я также полностью справился благодаря сети Интернет и книге Н.Я. Виленкина «За страницами учебника математики». Действительно, история происхождения арабских цифр оказалась очень запутанной. Я понял, что не совсем правильно называть наши цифры арабскими. В них сконцентрировался опыт многих цивилизаций: и египетской, и вавилонской, и греческой, и, конечно, индийской. Да, арабы добавили в индийскую систему счисления много своего, и именно арабы распространили эти цифры по Европе, но считать их только арабским достижением было бы несправедливо.
Задача №3 - сравнить различные системы счисления, чтобы разобраться, почему современные люди пользуются именно арабскими цифрами. Полагаю, что и с этой задачей мне удалось разобраться. К сожалению, мне пришлось признать, что наши славянские цифры крайне неудобны в использовании. Представляю, как бы путались современные школьники в буквах и цифрах, если бы мы по - прежнему пользовались славянской нумерацией. Удобство арабской нумерации очевидно:
арабская система счисления позиционная, т.е. значение цифры зависит от её места в записи числа, в ней присутствует понятие «нуль» и именно поэтому с помощью всего десяти цифр мы имеем возможность записать абсолютно любое число!
Задача №4 - исследовать уровень знаний окружающих меня людей о цифрах, которыми все они пользуются. Данная задача была решена с помощью опроса учащихся школы и Интернет – опроса. Я выяснил, что большинство опрошенных знает, что мы пользуемся арабской системой счисления, однако очень мало людей имеют представление о том, откуда пришли к нам наши цифры, и где зародилось понятие нуля. С большим трудом респонденты записывали современные цифры в других системах счисления. Причём, самое большое затруднение вызывала запись числа славянскими цифрами. Работая в данном направлении, я сделал своё личное маленькое открытие – открыл для себя программу – переводчик чисел (Titio_0.12.2).
Задача №5 -создание презентации, в которой отразились бы результаты моей проектно – исследовательской работы – так же решена.
Я считаю, что достиг своей цели и выполнил все задачи. Моя гипотеза полностью подтвердилась: история арабских цифр полна загадок, а долгожительство арабской системы счисления связано с её удобством. Мне очень понравилась работать с проектом. В дальнейшем я хочу продолжить работу в этом направлении, так как теперь меня заинтересовал вопрос магии чисел.
Магия чисел - энергия Бога,
Математика букв,
Трудиться надо очень долго,
Чтобы познать твой дух.

Литература
www.437000.ruН.Я. Виленкин. «За страницами учебника математики». Москва «Просвещение». 1989.
Н.Я. Виленкин. «Математика. 5 класс». Москва «Мнемозина».2013.
www.collectionstudio.comcomp-science.narod.ruinfo-7.ru
festival.1september.ruwww.wikipedia.org


Приложение 1
Несколько вариантов ответов из интернет-опроса:





Приложение 2
Цифры разных народов:




Приложение 3
О программе Titlo_0.12.2:
Переводчик чисел переводит числа из современной формы записи в запись буквами кириллицы и глаголицы и обратно. Также "Титло" может переводить цифры народов: китайские, армянские, грузинские, греческие (ионические и аттические), римские, иудейские числа, числа майя и прочие.
Диапазоны чисел в "Титло" невелики, но вполне достаточны для большинства потребностей нумизматов, филателистов и букинистов при определении дат и номиналов на монетах, марках и книгах. Впрочем, историкам-любителям Титло тоже может помочь.
Для некоторых цифр в разное время использовались разные буквы, либо менялся внешний вид этих букв. Поэтому для таких цифр даны дополнительные кнопки - используется та из них, под которой есть отметка галочкой. Все переключения в переводчике чисел можно делать при уже набранном числе - изменения сразу отобразятся в итоговом окошке.