Программа по математике 5 класс к учебнику И.И.Зубарева,А.Г.Мордкович ФГОС
Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования и обеспечена УМК для 5–6-го классов авторов И.И.Зубаревой, А.Г.Мордковича, УМК для 7-9-го классов авторов А.Г.Мордковича и др. , УМК 7-9-го классов авторов Л.С.Атанасяна, В.Ф.Бутузова, С.Б.Кадомцева.
ПРОГРАММА
ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ
по Математике
V—IX классы
I. Пояснительная записка
Важнейшие задачи образования в школе (формирование предметных и универсальных способов действий, обеспечивающих возможность продолжения образования в основной школе; воспитание умения учиться – способности к самоорганизации с целью решения учебных задач; индивидуальный прогресс в основных сферах личностного развития – эмоциональной, познавательной, регулятивной) реализуются в процессе обучения всем предметам.
Программа основного общего образования по математике составлена на основе федерального компонента государственного стандарта второго поколения основного общего образования. Предметные знания и умения, приобретённые при изучении математики в основной школе, первоначальное овладение математическим языком являются опорой для изучения смежных дисциплин, фундаментом обучения в средней школе общеобразовательных учреждений
Программа основного общего образования задает перечень вопросов, которые подлежат обязательному изучению в основной школе.
В программе по математике сохранена традиционная для российской школы ориентация на фундаментальный характер образования, на освоение школьниками основополагающих понятий и идей, таких, как число, буквенное исчисление, функция, геометрическая фигура, вероятность, дедукция, математическое моделирование. Настоящая программа включает материал, создающий основу математической грамотности, необходимой как тем, кто станет учеными, инженерами, изобретателями, экономистами и будет решать принципиальные задачи, связанные с математикой, так и тем, для кого математика не станет сферой непосредственной профессиональной деятельности. Вместе с тем подходы к формированию содержания школьного математического образования претерпели существенные изменения, отвечающие требованиям сегодняшнего дня. В программе основного общего образования по математике иначе сформулированы цели и требования к результатам обучения, что меняет акценты в преподавании; в нее включена характеристика учебной деятельности учащихся в процессе освоения содержания курса. Система математического образования в основной школе должна стать более динамичной за счет вариативной составляющей на всем протяжении второй ступени общего образования. В программе по математике предусмотрено значительное увеличение активных форм работы, направленных на вовлечение учащихся в математическую деятельность, на обеспечение понимания ими математического материала и развития интеллекта, приобретение практических навыков, умений проводить рассуждения, доказательства. Наряду с этим в ней уделяется внимание использованию компьютеров и информационных технологий для усиления визуальной и экспериментальной составляющей обучения математике.
Изучение математики в основной школе направлено на достижение следующих целей:1) в направлении личностного развития:• развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
• формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;• воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;• формирование качеств мышления, необходимых для адаптации в современном информационном обществе;• развитие интереса к математическому творчеству и математических способностей;2) в метапредметном направлении:• формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;• развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;• формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;3) в предметном направлении:• овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;• создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
II. Характеристика содержания основного общего образования по математике
Примерная программа основного общего образования по математике составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам общего образования, представленных в федеральном государственном образовательном стандарте общего образования, с учетом преемственности с Примерными программами для начального общего образования. В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования. Содержание математического образования применительно к основной школе представлено в виде следующих содержательных разделов. Это арифметика; алгебра; функции; вероятность и статистика; геометрия. Наряду с этим в содержание основного общего образования включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения. При этом первая линия – «Логика и множества» – служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая – «Математика в историческом развитии» – способствует созданию общекультурного, гуманитарного фона изучения курса. Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования. Содержание раздела «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе. Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры. Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления. Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера.Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах. Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.
III. Место учебных предметов математического цикла в Базисном учебном (образовательном) плане
Базисный учебный (образовательный) план на изучение математики в основной школе отводит 5 учебных часов в неделю в течение каждого года обучения, всего 875 уроков. Согласно Базисному учебному(образовательному) плану школы в 5—6 классах изучается предмет «Математика», в 7—9 классах параллельно изучаются предметы «Алгебра» и «Геометрия». Предмет «Математика» в 5–6 классах включает в себя арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии. Предмет «Алгебра» включает некоторые вопросы арифметики, развивающие числовую линию 5–6 классов, собственно алгебраический материал, элементарные функции, а также элементы вероятностно-статистической линии. В рамках учебного предмета «Геометрия» традиционно изучаются евклидова геометрия, элементы векторной алгебры, геометрические преобразования.
IV.Ценностные ориентиры содержания учебного предмета
Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры.
Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.
Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.
Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.
Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.
Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.
Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.
История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.
V.Требования к результатам обучения и освоению содержания курса
Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:в личностном направлении:1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;4) креативность мышления, инициатива, находчивость, активность при решении математических задач;5) умение контролировать процесс и результат учебной математической деятельности;6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
В метапредметном направлении:
1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.В предметном направлении: 1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений;4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем; умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;5) овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;6) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;7) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;8) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;9) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;10) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
VI. Содержание учебных предметов.
Математика. Алгебра. Геометрия
Арифметика
Натуральные числа. Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.
Степень с натуральным показателем.
Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами.
Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.
Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.
Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.
Проценты; нахождение процентов от величины и величины по её процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции.
Решение текстовых задач арифметическими способами.
Рациональные числа. Положительные и отрицательные числа, модуль числа. Множество целых чисел. Множество рациональных чисел; рациональное число как отношение m/n, где т — целое число, а n — натуральное. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с целым показателем.
Действительные числа. Квадратный корень из числа. Корень третьей степени.
Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.
Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел.
Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.
Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени десяти в записи числа.
Приближённое значение величины, точность приближения. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.
Алгебра
Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.
Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен; разложение квадратного трёхчлена на множители.
Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства.
Рациональные выражения и их преобразования. Доказательство тождеств.
Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.
Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.
Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвёртой степеней. Решение дробно-рациональных уравнений.
Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.
Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными.
Решение текстовых задач алгебраическим способом.
Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.
Неравенства. Числовые неравенства и их свойства.
Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.
Функции
Основные понятия. Понятие функции, область применения и область значения функции. Способы задания функции. График функции. Свойства функции, их отражение на графике. Примеры зависимостей; прямая пропорциональность; обратная пропорциональность. Задание зависимостей формулами; вычисления по формулам. Зависимости между величинами. Примеры графиков зависимостей, отражающих реальные процессы.
Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, её график и свойства. Квадратичная функция, её график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций
Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.
Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых п-х членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.
Вероятность и статистика.
Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.
Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.
Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.
Геометрия.
Наглядная геометрия. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырёхугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Изображение геометрических фигур и их конфигураций.
Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.
Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира. Биссектриса угла.
Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближённое измерение площади фигур на клетчатой бумаге. Равновеликие фигуры. Разрезание и составление геометрических фигур.
Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры развёрток многогранников, цилиндра и конуса. Изготовление моделей пространственных фигур.
Понятие объёма; единицы объёма. Объём прямоугольного параллелепипеда, куба.
Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.
Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.
Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.
Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.
Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180, приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника.
Четырёхугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.
Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.
Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные окружности правильного многоугольника.
Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.
Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.
Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми.
Периметр многоугольника.
Длина окружности, число π, длина дуги окружности.
Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.
Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.
Решение задач на вычисление и доказательство с использованием изученных формул.
Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.
Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.
Логика и множества.
Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.
Иллюстрация отношений между множествами с помощью диаграмм Эйлера—Венна.
Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.
Понятие о равносильности, следовании, употребление логических связок если..., то, в том и только в том случае, логические связки и, или.
Математика в историческом развитии. История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма. Ф. Виет. Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырёх. Н. Тарталья, Дж. Кардано, Н. X. Абель. Э. Галуа.
Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.
От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построения с помощью циркуля и линейки. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата. Софизмы, парадоксы.
VII. Тематическое планирование.
5-6 классы (350 ч)
Основное содержание по темам
Характеристика основных видов деятельности ученика (на уровне учебных действий)
1. Натуральные числа (50 ч)
Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.
Понятие о степени с натуральным показателем.
Квадрат и куб числа.
Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок.
Решение текстовых задач арифметическими способами.
Делители и кратные. Наибольший общий делитель; наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, Б, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком Описывать свойства натурального ряда.
Читать и записывать натуральные числа, сравнивать и упорядочивать их.
Выполнять вычисления с натуральными числами; вычислять значения степеней.
Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения.
Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.
Формулировать определения делителя и кратного, простого числа и составного числа, свойства и признаки делимости.
Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от деления на 3 и т. п.). Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с использованием калькулятора, компьютера)
2. Дроби (120 ч)
Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.
Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.
Отношение. Пропорция; основное свойство пропорции.
Проценты; нахождение процентов от величины и - величины по ее процентам; выражение отношения в процентах.
Решение текстовых задач арифметическими способами Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби.
Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действий с обыкновенными дробями.
Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Выполнять вычисления с обыкновенными дробями.
Читать и записывать десятичные дроби.
Представлять обыкновенные дроби в виде десятичных и десятичные в виде обыкновенных;
находить десятичные приближения обыкновенных дробей.
Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями.
Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях.
Выполнять прикидку и оценку в ходе вычислений.
Объяснять, что такое процент. Представлять проценты в виде дробей и дроби в виде процентов.
Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их. Приводить примеры использования отношений на практике.
Решать задачи на проценты и дроби (в том числе задачи из реальной практики), используя при необходимости
калькулятор; использовать понятия отношения и пропорции при решении задач.
Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.
Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты (в том числе с использованием калькулятора, компьютера)
3. Рациональные числа (40 ч)
Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа.
Множество целых чисел. Множество рациональных чисел. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш - проигрыш, выше - ниже уровня моря и т. п.).
Изображать точками координатной прямой положительные и отрицательные рациональные числа.
Характеризовать множество целых чисел, множество рациональных чисел.
Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять для преобразования числовых выражений.
Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами
4. Измерения, приближения, оценки. Зависимости между величинами (20 ч)
Примеры зависимостей между величинами скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представление зависимостей в виде формул. Вычисления по формулам.
Решение текстовых задач арифметическими способами Выражать одни единицы измерения величины в других единицах (метры в километрах, минуты в часах и т.: п.).
Округлять натуральные числа и десятичные дроби. Выполнять прикидку и оценку в ходе вычислений.
Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам.
Использовать знания о зависимостях между величинами (скорость, время, расстояние; работа, производительность, время ит. п.) при решении текстовых задач
5. Элементы алгебры (25 ч)
Использование букв для обозначения чисел, для записи свойств арифметических действий.
Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения Читать и записывать буквенные выражения, составлять буквенные выражения по условиям задач.
Вычислять числовое значение буквенного выражения при заданных значениях букв.
Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий.
Декартовы координаты на плоскости. Построение точки по ее координатам, определение координат точки на плоскости Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.
Строить на координатной плоскости точки и фигуры по заданным координатам; определять координаты точек
6. Описательная статистика. Вероятность. Комбинаторика (20 ч)
Представление данных в виде таблиц, диаграмм. Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов.
Решение комбинаторных задач перебором вариантов Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным,
сравнивать величины, находить наибольшие и наименьшие значения и др.
Выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ.
Приводить примеры случайных событий, достоверных и невозможных событий.
Сравнивать шансы наступления событий; строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др.
Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям
7. Наглядная геометрия (45 ч)
Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Равновеликие фигуры.
Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники, правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.
Понятие объема; единицы объема. Объем прямоугольного параллелепипеда и объем куба.
Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур Выражать одни единицы измерения площади через другие.
Изготавливать пространственные фигуры из разверток; распознавать развертки куба, параллелепипеда, пирамиды, цилиндра и конуса. Рассматривать простейшие сечения пространственных фигур, получаемые путем предметного или компьютерного моделирования, определять их вид.
Вычислять объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и объема прямоугольного параллелепипеда. Выражать одни единицы измерения объема через другие.
Исследовать и описывать свойства геометрических фигур (плоских и пространственных), используя эксперимент, наблюдение, измерение.
Моделировать геометрические объекты, используя бумагу, пластилин, проволоку и др. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов.
Находить в окружающем мире плоские и пространственные симметричные фигуры.
Решать задачи на нахождение длин отрезков, периметров многоугольников, градусной меры углов, площадей квадратов и прямоугольников, объемов кубов и прямоугольных параллелепипедов, куба. Выделять в условии задачи данные, необходимые для ее решения, строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи.
Изображать равные фигуры, симметричные фигуры
Резерв времени - 30 ч
АЛГЕБРА
7—9 классы (315 ч)
Основное содержание по темам Характеристика основных видов деятельности ученика (на уровне учебных действий)
1. Действительные числа (15 ч)
Расширение множества натуральных чисел до множества целых, множества целых чисел до множества рациональных. Рациональное число как отношение —mn, где т - целое число, а п - натуральное число.
Степень с целым показателем.
Квадратный корень из числа. Корень третьей степени.
Понятие об иррациональном числе. Иррациональность числа -у2 и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.
Множество действительных чисел; представление действительных чисел в виде бесконечных десятичных дробей. Сравнение действительных чисел.
_ Взаимно однозначное соответствие между действительными числами и точками координатной прямой. Числовые промежутки: интервал, отрезок, луч Описывать множество целых чисел, множество рациональных чисел, соотношение между этими множествами.
Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами, вычислять значения степеней с целым показателем.
Формулировать определение квадратного корня из числа. Использовать график функции у = х2 для нахождения квадратных корней. Вычислять точные и приближенные значения корней, используя при необходимости калькулятор; проводить оценку квадратных корней.
Формулировать определение корня третьей степени; находить значения кубических корней, при необходимости используя калькулятор.
Приводить примеры иррациональных чисел; распознавать рациональные и иррациональные числа; изображать числа точками координатной прямой.
Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа.
Описывать множество действительных чисел.
Использовать в письменной математической речи обозначения и графические изображения числовых множеств, теоретико-множественную символику
2. Измерения, приближения, оценки (10 ч)
Приближенное значение величины, точность приближения. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя - степени 10 в записи числа.
Прикидка и оценка результатов вычислений Находить, анализировать, сопоставлять числовые характеристики объектов окружающего мира.
Использовать запись чисел в стандартном виде для выражения размеров объектов, длительности процессов в окружающем мире.
Сравнивать числа и величины, записанные*с использованием степени 10.
Использовать разные формы записи приближенных значений; делать выводы о точности приближения по записи приближенного значения.
Выполнять вычисления с реальными данными.
Выполнять прикидку и оценку результатов вычислений
3. Введение в алгебру (8 ч)
Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных.
Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество Выполнять элементарные знаково-символические действия: применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выражения по условиям, заданным словесно, рисунком или чертежом; преобразовывать алгебраические суммы и произведения (выполнять приведение подобных слагаемых, раскрытие скобок, упрощение произведений).
Вычислять числовое значение буквенного выражения; находить область допустимых значений переменных в выражении
4. Многочлены (45 ч)
Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат Формулировать, записывать в символической форме и обосновывать свойства степени с натуральным показателем; применять свойства степени для преобразования выражений и вычислений.
разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения.
Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен, разложение квадратного трехчлена на множители Выполнять действия с многочленами.
Выводить формулы сокращенного умножения, применять их в преобразованиях выражений и вычислениях.
Выполнять разложение многочленов на множители.
Распознавать квадратный трехчлен, выяснять возможность разложения на множители, представлять квадратный трехчлен в виде произведения линейных множителей.
Применять различные формы самоконтроля при выполнении преобразований
5. Алгебраические дроби (22 ч)
Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и ее свойства. Рациональные выражения и их преобразования. Доказательство тождеств Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей.
Выполнять действия с алгебраическими дробями. Представлять целое выражение в виде Многочлена, дробное - в виде отношения многочленов; доказывать тождества.
Формулировать определение степени с целым показателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений
6. Квадратные корни (12 ч)
Понятия квадратного корня, арифметического квадратного корня. Уравнение вида х1=а. Свойства арифметических квадратных корней: корень из произведения, частного, степени; тождества (л[а)2 = а, где а >0, = \а\. Применение свойств арифметических Доказывать свойства арифметических квадратных корней; применять их для преобразования выражений.
Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул.
квадратных корней для преобразования числовых выражений и вычислений Исследовать уравнение вида х2 = а\ находить точные и приближенные корни при а > 0
7. Уравнения с одной переменной (38 ч)
Уравнение с одной переменной. Корень уравнения.
Свойства числовых равенств. Равносильность уравнений.
Линейное уравнение. Решение уравнений, сводящихся к линейным.
Квадратное уравнение. Неполные квадратные уравнения. Формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение.
Примеры решения уравнений третьей и четвертой степени разложением на множители.
Решение дробно-рациональных уравнений.
Решение текстовых задач алгебраическим способом Распознавать линейные и квадратные уравнения, целые и дробные уравнения.
Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; решать дробно-рациональные уравнения.
Исследовать квадратные уравнения по дискриминанту и коэффициентам. 4
Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат
8. Системы уравнений (30 ч)
Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Примеры решения уравнений в целых числах.
Система уравнений с двумя переменными. Равносильность систем уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Решение систем двух уравнений, одно из которых линейное, а другое второй степени. Примеры решения систем нелинейных уравнений.
Решение текстовых задач алгебраическим способом. Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решения уравнений с двумя переменными.
Решать задачи, алгебраической моделью которых является уравнение с двумя переменными; находить целые решения путем перебора.
Решать системы двух уравнений с двумя переменными, указанные в содержании.
Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат.
Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными.
График линейного уравнения с двумя переменными, угловой коэффициент прямой; условие параллельности прямых.
Графики простейших нелинейных уравнений (парабола, гипербола, окружность).
Графическая интерпретация системы уравнений с двумя переменными Строить графики уравнений с двумя переменными. Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков.
Решать и исследовать уравнения и системы уравнений на основе функционально-графических представлений уравнений
9. Неравенства (20 ч)
Числовые неравенства и их свойства.
Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства.
Системы линейных неравенств с одной переменной Формулировать свойства числовых неравенств, иллюстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств при решении задач.
Распознавать линейные и квадратные неравенства. Решать линейные неравенства, системы линейных неравенств. Решать квадратные неравенства на основе графических представлений
10. Зависимости между величинами (15 ч)
Зависимость между величинами.
Представление зависимостей между величинами в виде формул. Вычисления по формулам.
Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свойства. Примеры прямо пропорциональных зависимостей.
Обратная пропорциональная зависимость: задание формулой, коэффициент обратной пропорцио- Составлять формулы, выражающие зависимости между величинами, вычислять по формулам.
Распознавать прямую и обратную пропорциональные зависимости. Решать текстовые задачи на прямую и обратную пропорциональные зависимости (в том числе с контекстом из смежных дисциплин, из реальной жизни)
нальности; свойства. Примеры обратных пропорциональных зависимостей.
Решение задач на прямую пропорциональную и обратную пропорциональную зависимости 11. Числовые функции (35 ч)
Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение графиков функций.
Примеры графиков зависимостей, отражающих реальные процессы.
Функции, описывающие прямую и обратную пропорциональные зависимости, их графики.
Линейная функция, ее график и свойства.
Квадратичная функция, ее график и свойства.
Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций у = л[х, у =Цх, у = IX I Вычислять значения, функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функций.
Строить по точкам графики функций. Описывать свойства функции на основе ее графического представления.
Моделировать реальные зависимости формулами и графиками. Читать графики реальных зависимостей.
Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-сим- волических действий. Строить речевые конструкции с использованием функциональной терминологии.
Использовать компьютерные программы для построения графиков функций, для исследования положения на координатной .плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу.
Распознавать виды изучаемых функций. Показывать
схематически положение на координатной плоскости графиков функций вида у = кх, у = кх + Ь, У = У = ах2, у = ах2 + с, у = ах2 + Ъх + с в зависимости от значений коэффициентов, входящих в формулы.
Строить графики изучаемых функций; описывать их свойства
12. Числовые последовательности. Арифметическая и геометрическая прогрессии (15 ч)
Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой л-го члена.
Арифметическая и геометрическая прогрессии. Формулы л-го члена арифметической и геометрической прогрессий, суммы первых л членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты Применять индексные обозначения, строить речевые высказывания с использованием терминологии, связанной с понятием последовательности.
Вычислять члены последовательностей, заданных формулой л-го члена или рекуррентной формулой. Устанавливать закономерность в построении последовательности, если известны первые несколько ее членов. Изображать члены последовательности точками на координатной плоскости.
Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выводить на основе доказательных рассуждений формулы общего члена арифметической и геометрической прогрессий, суммы первых л членов арифметической и геометрической прогрессий; решать задачи с использованием этих формул.
Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствующие зависимости графически.
Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием калькулятора)
13. Описательная статистика (10 ч)
Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным. Определять
характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании по диаграммам наибольшие и наименьшие данные, сравнивать величины.
Представлять информацию в виде таблиц, столбчатых и круговых диаграмм, в том числе с помощью компьютерных программ.
Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), находить среднее арифметическое, размах числовых наборов.
Приводить содержательные примеры использования средних для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климатических зон)
14. Случайные события и вероятность (15 ч)
Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события; оценивать вероятность с помощью частоты, полученной опытным путем.
Решать задачи на нахождение вероятностей событий.
Приводить примеры случайных событий, в частности достоверных и невозможных событий, маловероятных событий. Приводить примеры равновероятных событий
15. Элементы комбинаторики (10 ч)
Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций.
Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.).
Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления.
Решать задачи на вычисление вероятности с применением комбинаторики
16. Множества. Элементы логики (5 ч)
Множество, элемент множества.- Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств.
Иллюстрация отношений между множествами с помощью диаграмм Эйлера - Венна.
Понятия о равносильности, следовании, употребление логических связок если ..., то ..., в том и только том случае. Логические связки и, или Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение множеств. Приводить примеры несложных классификаций.
Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса.
Иллюстрировать математические понятия и утверждения примерами. Использовать примеры и контрпримеры в аргументации.
Конструировать математические предложения с помощью связок если ..., то ..., в том и только том случае, логических связок и, или
Резерв времени -10 ч
ГЕОМЕТРИЯ
7—9 классы (210 ч)
Основное содержание по темам Характеристика основных видов деятельности ученика (на уровне учебных действий)
1. Прямые и углы (75 ч)
Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, развернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свойства углов с параллельными и перпендикулярными сторонами. Взаимное расположение прямых на плоскости: параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.
Геометрическое место точек. Метод геометрических мест точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку Формулировать определения и иллюстрировать понятия отрезка, луча; угла, прямого, острого, тупого и развернутого углов; вертикальных и смежных углов; биссектрисы угла.
Формулировать определения параллельных прямых; углов, образованных при пересечении двух параллельных прямых секущей; перпендикулярных прямых; перпендикуляра и наклонной к прямой; серединного перпендикуляра к отрезку; распознавать и изображать их на чертежах и рисунках.
Объяснять, что такое геометрическое место точек, приводить примеры геометрических мест точек.
Формулировать аксиому параллельных прямых.
Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности перпендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.
Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопоставлять полученный результат с условием задачи
2. Треугольники (65 ч)
Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.
Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.
Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическее тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов.
Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений Формулировать определения прямоугольного, остроугольного, тупоугольного, равнобедренного, равностороннего треугольников; высоты, медианы, биссектрисы, средней линии треугольника; распознавать и изображать их на чертежах и рисунках.
Формулировать определение равных треугольников. Формулировать и доказывать теоремы о признаках равенства треугольников.
Объяснять и иллюстрировать неравенство треугольника.
Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношениях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней линии треугольника.
Формулировать определение подобных треугольников.
Формулировать и доказывать теоремы о признаках подобия треугольников, теорему Фалеса.
Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать и доказывать теорему Пифагора.
Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180°. Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов. Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной тригонометрической функции угла вычислять значения других тригонометрических функций этого угла. Формулировать и доказывать теоремы синусов и косинусов.
Формулировать и доказывать теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений.
Исследовать свойства треугольника с помощью компьютерных программ.
Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Опираясь на данные условия задачи, проводить необходимые рассуждения. Интерпретировать полученный результат и сопоставлять его с условием задачи
3. Четырехугольники (20 ч)
Четырехугольник. Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограмма и его признаки.
Прямоугольник, теорема о равенстве диагоналей прямоугольника.
Ромб, теорема о свойстве диагоналей.
Квадрат.
Трапеция, средняя линия трапеции; равнобедренная трапеция
Формулировать определения параллелограмма, прямоугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках.
Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадрата, ромба, трапеции.
Исследовать свойства четырехугольников с помощью компьютерных программ.
Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи
4. Многоугольники (10 ч)
Многоугольник. Выпуклые многоугольники. Правильные многоугольники. Теорема о сумме углов выпуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника Распознавать многоугольники, формулировать определение и приводить примеры многоугольников.
Формулировать и доказывать теорему о сумме углов выпуклого многоугольника.
Исследовать свойства многоугольников с помощью компьютерных программ.
Решать задачи на доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи
5. Окружность и круг (20 ч)
Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства.
Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника. Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окружностью.
Формулировать и доказывать теоремы о вписанных углах, углах, связанных с окружностью.
Изображать, распознавать и описывать взаимное расположение прямой и окружности.
Изображать и формулировать определения вписанных и описанных многоугольников и треугольников;
Вписанные и описанные окружности правильного многоугольника.
Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, описанной около правильного многоугольника окружности, вписанной в треугольник, и окружности, описанной около треугольника.
Формулировать и доказывать теоремы о вписанной и описанной окружностях треугольника и многоугольника.
Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.
Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи
6. Геометрические преобразования (10 ч)
Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигуры, выполнять параллельный перенос и поворот.
Исследовать свойства движений с помощью компьютерных программ.
Выполнять проекты по темам геометрических преобразований на плоскости
7. Построения с помощью циркуля и линейки (5 ч)
Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей Решать задачи на построение с помощью циркуля и линейки.
Находить условия существования решения, выполнять построение точек, необходимых для построения искомой фигуры. Доказывать, что построенная фигура удовлетворяет условиям задачи (определять число решений задачи при каждом возможном выборе данных)
8. Измерение геометрических величин (25 ч)
Длина отрезка. Длина ломаной. Периметр многоугольника.
Расстояние от точки до прямой. Расстояние между параллельными прямыми.
Длина окружности, число п; длина дуги окружности.
Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.
Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы).
Формулы, выражающие площадь треугольника через две стороны и угол между ними, через периметр и радиус вписанной окружности; формула Герона. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур Объяснять и иллюстрировать понятие периметра многоугольника.
Формулировать определения расстояния между точками, от точки до прямой, между параллельными прямыми.
Формулировать и объяснять свойства длины, градусной меры угла, площади.
Формулировать соответствие между величиной центрального угла и длиной дуги окружности.
Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур.
Выводить формулы площадей прямоугольника, параллелограмма, треугольника и трапеции, а также формулу, выражающую площадь треугольника через две стороны и угол между ними, длину окружности, площадь круга.
Находить площадь многоугольника разбиением на треугольники и четырехугольники.
Объяснять и иллюстрировать отношение площадей подобных фигур.
Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четырехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, находить возможности применения необходимых формул, преобразовывать формулы. Использовать формулы для обоснования доказательных рассуждений в ходе решения.
Интерпретировать полученный результат и сопоставлять его с условием задачи
9. Координаты (10 ч)
Декартовы координаты на плоскости. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности Объяснять и иллюстрировать понятие декартовой системы координат.
Выводить и использовать формулы координат середины отрезка, расстояния между двумя точками плоскости, уравнения прямой и окружности.
Выполнять проекты по темам использования координатного метода при решении задач на вычисления и доказательства
10. Векторы (10 ч)
Вектор. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение векторов Формулировать определения и иллюстрировать понятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов.
Вычислять длину и координаты вектора.
Находить угол между векторами.
Выполнять операции над векторами.
Выполнять проекты по темам использования векторного метода при решении задач на вычисления и доказательства
11. Элементы логики (5 ч)
Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример. Воспроизводить формулировки определений; конструировать несложные определения самостоятельно. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на определения, теоремы, аксиомы
Резерв времени -15 ч
СОДЕРЖАНИЕ ПРОГРАММЫ
5 класс (175 часов)
Арифметика
Натуральные числа (27 ч)
Десятичная система исчисления. Римская нумерация. Арифметические действия над натуральными числами. Степень с натуральным показателем. Законы арифметических действий: переместительный, сочетательный, распределительный. Округление чисел. Прикидка и оценка результатов вычислений. Деление с остатком.
Обыкновенные дроби (32 ч)
Основное свойство дроби. Сравнение дробей. Арифметические действия с обыкновенными дробями: сложение и вычитание дробей с одинаковыми и с разными знаменателями (простейшие случаи), умножение и деление обыкновенной дроби на натуральное число. Нахождение части от целого и целого по его части в два приема.
Десятичная дробь (28 ч)
Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.
Текстовые задачи (24 ч)
Решение текстовых задач арифметическим способом. Математические модели реальных ситуаций (подготовка учащихся к решению задач алгебраическим методом).
Измерения, приближения, оценки (8 ч)
Единицы измерения длины, площади, объема, массы, времени, скорости. Размеры объектов окружающего нас мира (от элементарных частиц до Вселенной), длительность процессов в окружающем нас мире.
Представление зависимости между величинами в виде формул.
Проценты (7 ч)
Нахождение процента от величины, величины по ее проценту.
Начальные сведения курса алгебры
Алгебраические выражения (11 ч)
Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения Упрощение выражений (простейшие случаи приведения подобных слагаемых);
Уравнение. Корень уравнения. Решение уравнений методом отыскания неизвестного компонента действия (простейшие случаи).
Координаты (2 ч)
Координатный луч. Изображение чисел точками координатного луча.
Начальные понятия и факты курса геометрииГеометрические фигуры и тела. Равенство в геометрии (18 ч)
Точка, прямая .плоскость. Расстояние. Отрезок, луч. Ломаная.
Прямоугольник. Окружность и круг. Центр, радиус, диаметр. Угол. Прямой угол. Острые и тупые углы. Развернутый угол. Биссектриса угла. Свойство биссектрисы угла.
Треугольник. Виды треугольников. Сумма углов треугольника.
Перпендикулярность прямых. Серединный перпендикуляр. Свойство серединного перпендикуляра к отрезку.
Наглядные представления о пространственных телах: кубе, параллелепипеде, призме, пирамиде, шаре, сфере, конусе, цилиндре. Развертка прямоугольного параллелепипеда.
Измерение геометрических величин (9 ч)
Длина отрезка. Длина ломаной периметр треугольника, прямоугольника.
Расстояние между двумя точками. Масштаб. Расстояние от точки до прямой.
Величина угла. Градусная мера угла.
Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры..
Периметр и площадь прямоугольника. Площадь прямоугольного треугольника, площадь произвольного треугольника.
Объем тела. Формулы объема прямоугольного параллелепипеда, куба.
Элементы комбинаторики (4 ч)Достоверные, невозможные и случайные события. Перебор вариантов, дерево вариантов.
ТРЕБОВАНИЯК МАТЕМАТИЧЕСКОЙ ПОДГОТОВКЕ УЧАЩИХСЯ 5 КЛАССА
Учащиеся должны иметь представление: о числе и десятичной системе счисления, о натуральных числах, обыкновенных и десятичных дробях;
об основных изучаемых понятиях (число, фигура, уравнение) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
о достоверных, невозможных и случайных событиях;
о плоских фигурах и их свойствах, а также о простейших пространственных телах.
Учащиеся должны уметь
выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику;
выполнять арифметические действия с натуральными числами, обыкновенными и десятичными дробями;
выполнять простейшие вычисления с помощью микрокалькулятора;
решать текстовые задачи арифметическим способом; составлять графические и аналитические модели реальных ситуаций;
составлять алгебраические модели реальных ситуаций и выполнять простейшие преобразования буквенных выражений
(типа 0,5х + 7,2х + 8 = 7,7х + 8);
решать уравнения методом отыскания неизвестного компонента действия (простейшие случаи);
строить дерево вариантов в простейших случаях;
использовать геометрический язык для описания предметов окружающего мира в простейших случаях;
определять длину отрезка, величину угла;
вычислять периметр и площадь прямоугольника, треугольника, объем куба и прямоугольного параллелепипеда.
6 класс (175 ч)
Арифметика
Рациональные числа (40 ч)
Целые числа: положительные, отрицательные и нуль. Модуль(абсолютная величина) числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами.
Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий: переместительный,сочетательный распределительный.
Проценты. Нахождение процента от величины; величины по ее проценту, процентного отношения. Задачи с разными процентными базами.
Отношение, выражение отношения в процентах. Пропорция. Пропорциональные и обратно пропорциональные величины.
Натуральные числа (20 ч)
Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное.
Дроби (40 ч)
Арифметические действия с обыкновенными дробями: сложение и вычитание дробей с разными знаменателями (случаи, требующие применения алгоритма отыскания НОК), умножение и деление обыкновенных дробей. Нахождение части от целого и целого по его части в один прием.
Начальные сведения курса алгебры
Алгебраические выражения. Уравнения (44 ч)
Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Равенство буквенных выражений. Упрощение выражений, раскрытие скобок (простейшие случаи). Алгоритм решения уравнения переносом слагаемых из одной части уравнения в другую.
Решение текстовых задач алгебраическим методом (выделение трех этапов математического моделирования).
Отношения. Пропорциональность величин.
Координаты (8 ч)
Координатная прямая. Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.
Декартовы координаты на плоскости; координаты точки.
Начальные понятия и факты курса геометрии
Геометрические фигуры и тела, симметрия на плоскости (12 ч)
Центральная и осевая симметрия. Параллельность прямых. Окружность и круг. Число п. Длина окружности. Площадь круга.
Наглядные представления о шаре, сфере. Формулы площади поверхности сферы и объема шара.
Элементы теории вероятностейПервые представления о вероятности (6 ч)
Число всех возможных исходов, правило произведения. Благоприятные и неблагоприятные исходы. Подсчет вероятности события в простейших случаях.
Обобщающее повторение 5 часов.
ТРЕБОВАНИЯ К МАТЕМАТИЧЕСКОЙ ПОДГОТОВКЕ УЧАЩИХСЯ
6 КЛАССА
Учащиеся должны иметь представление:
о числе и числовых системах от натуральных до рациональных чисел;
о вероятности, о благоприятных и неблагоприятных исходах; о подсчете вероятности;
о пропорциональных и обратно пропорциональных величинах.
Учащиеся должны уметь:
использовать символический язык алгебры, выполнять тождественные преобразования простейших буквенных выражений, применять приобретенные навыки в ходе решения задач;
решать линейные уравнения, применять данные умения для решения задач;
решать задачи выделением трех этапов математического моделирования;
составлять и решать пропорции;
использовать геометрический язык для описания предметов окружающего мира;
применять правило произведения при решении простейших вероятностных задач;
вычислять длину окружности, площадь круга.
АЛГЕБРА
7—9 классы
7 класс (105 ч)
Математический язык. Математическая модель (14 ч)
Числовые и алгебраические выражения. Переменная. Допустимое значение переменной. Недопустимое значение переменной. Первые представления о математическом языке и о Математической модели. Линейные уравнения с одной переменной.
Линейные уравнения как математические модели реальных ситуаций. Координатная прямая, виды промежутков на ней.
Линейная функция (12ч)
Координатная плоскость. Алгоритм отыскания координат точки. Алгоритмпостроения точки М (а; Ь) в прямоугольной системе координат.
Линейное уравнение с двумя переменными. Решение уравнения ах + by + с = 0. График уравнения. Алгоритм построения графика уравнения ах + by + с — 0.
Линейная функция. Независимая переменная {аргумент). Зависимая переменная. График линейной функции. Наибольшее, наименьшее значения линейной функции на заданном промежутке. Возрастание и убывание линейной функции.
Линейная функция у = kx и её график.
Взаимное расположение графиков линейных функций.
Системы двух линейных уравнений с двумя переменными(13 ч)
Система уравнений. Решение системы уравнений. Графический метод решения системы уравнений. Метод подстановки. Метод алгебраического сложения.
Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций (текстовые задачи).
Степень с натуральным показателем (7 ч)
Степень. Основание степени. Показатель степени. Свойства степени с натуральным показателем. Умножение и деление степеней с одинаковыми показателями. Степень с нулевым, показателем.
Одночлены. Операции над одночленами (8 ч)
Одночлен. Коэффициент одночлена. Стандартный вид одночлена. Подобные одночлены.
Сложение одночленов. Умножение одночленов Возведение одночлена в натуральную степень. Деление одночлена на одночлен.
Многочлены. Арифметические операции над многочленами(15 ч)
Многочлен. Члены многочлена. Двучлен. Трехчлен. Приведение подобных членов многочлена. Стандартный вид многочлена.
Сложение и вычитание многочленов. Умножение многочлена на одночлен. Умножение многочлена на многочлен.
Квадрат суммы и квадрат разности. Разность квадратов. Разность кубов и сумма кубов.
Деление многочлена на одночлен.
Разложение многочленов на множители (18 ч)
Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью формул сокращенного умножения, комбинации различных приемов. Метод выделения полного квадрата.
Понятие алгебраической дроби. Сокращение алгебраической дроби.
Тождество. Тождественно равные выражения. Тождественные преобразования.
Функция у = х2 (9 ч)
Функция у = х2, ее свойства и график. Функция у = -х2, ее свойства и график.
Графическое решение уравнений,
Кусочная функция. Чтение графика функции. Область определения функции. Первое представление о непрерывных функциях. Точка разрыва. Разъяснение смысла записи у = f(x). Функциональная символика.
Обобщающее повторение (9 ч)
ТРЕБОВАНИЯ К ПОДГОТОВКЕ ШКОЛЬНИКОВ В ОБЛАСТИ МАТЕМАТИКИ (7 КЛАСС)
Данной программой предусмотрено, чтобы в процессе изучения учащиеся овладеют системой математических знаний и умений и будут:
- иметь представления о числовых и алгебраических выражениях, о математическом языке и о математической модели, о линейном уравнении как математической модели реальных ситуаций.
- знать определение степени с натуральным показателем, свойства степеней.
- уметь выполнять действия над степенями с натуральными показателями.
- знать определение одночлена, его стандартный вид.
- уметь выполнять сложение, вычитание, умножение, возведение одночлена в натуральную степень, деление одночлена на одночлен.
- знать определение многочлена, его стандартный вид.
- уметь выполнять сложение, вычитание, умножение, деление многочленов.
- знать формулы сокращенного умножения.
- уметь применять формулы сокращенного умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители, комбинировать различные приемы.
- иметь представления об алгебраических дробях.
- уметь сокращать алгебраические дроби.
- знать основные функциональные понятия и графики функций у=кх+в, у=кх.
- уметь строить и читать графики линейной функции, находить наибольшее и наименьшее значения линейной функции на заданном промежутке.
- знать определение, свойства, график функции у=х 2 , понятие о непрерывных и разрывных функциях, функциональную символику.
- уметь находить наибольшее и наименьшее значения на заданных промежутках, строить и читать графики функции у=х2, «кусочных» функций, решать уравнения графическим способом.
- знать основные способы решения систем линейных уравнений с двумя переменными: метод подстановки, метод алгебраического сложения, графический метод.
- уметь решать системы линейных уравнений с двумя переменными.
- уметь применять решение систем линейных уравнений при решении текстовых задач.
8 класс (105ч)
Алгебраические дроби (21 ч)
Понятие алгебраической дроби. Основное свойство алгебраической дроби. Сокращение алгебраических дробей.
Сложение и вычитание алгебраических дробей.
Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень.
Рациональное выражение. Рациональное уравнение. Решение рациональных уравнений (первые представления).
Степень с отрицательным целым показателем.
Функция у =√х Свойства квадратного корня (18 ч)
Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел.
Функция у =√х ее свойства и график. Выпуклость функции. Область значений функции.
Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня. Освобождение от иррациональности в знаменателе дроби. Модуль действительного числа. График функции у = |х|. Формула
Квадратичная функция. Функция у = кх (18 ч)
Функция у = ах2, ее график, свойства.
Функция у = кх , ее свойства, график. Гипербола. Асимптота.
Построение графиков функций у = f(x + I), у = f(x) + т, у = f(x + I) + т, у = -f(x) по известному графику функции у = f(x)
Квадратный трехчлен. Квадратичная функция, ее свойства и график. Понятие ограниченной функции. Построение и чтение графиков кусочных функций, составленных из функций у = С, у = kx + т, у = ах2 + вх + с, у =√х , у = |х|. у = кхГрафическое решение квадратных уравнений.
Квадратные уравнения (21 ч)
Квадратное уравнение. Приведенное (неприведенноё) квадратное уравнение. Полное (неполное) квадратное уравнение. Корень квадратного уравнения. Решение квадратного уравнения методом разложения на множители, методом выделения полного квадрата.
Дискриминант. Формулы корней квадратного уравнения. Параметр. Уравнение с параметром (начальные представления).
Алгоритм решения рационального уравнения. Биквадратное уравнение. Метод введения новой переменной.
Рациональные уравнения как математические модели реальных ситуаций.
Частные случаи формулы корней квадратного уравнения.
Теорема Виета. Разложение квадратного трехчлена на линейные множители.
Иррациональное уравнение. Метод возведения в квадрат.
Неравенства (15 ч)
Свойства числовых неравенств.
Неравенство с переменной. Решение неравенств с переменной. Линейное неравенство. Равносильные неравенства.' Равносильное преобразование неравенства.
Квадратное неравенство. Алгоритм решения квадратйого неравенства.
Возрастающая функция. Убывающая функция. Исследование функций на монотонность (с использованием свойств числовых неравенств).
Приближенные значения действительных чисел, погрешность приближения, приближение по недостатку и избытку. Стандартный вид числа.
Обобщающее повторение (12ч)
Требования к математической подготовке учащихся 8 класса
Учащиеся должны знать/понимать:
значение математической науки для решения задач, возникающих в теории и практике;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа;
должны уметь:
выполнять арифметические действия, сочетая устные и письменные приемы; находить значения корня натуральной степени;
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия с многочленами и алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные выражения рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним системы двух линейных уравнений и несложные нелинейные уравнения;
решать линейные и квадратные неравенства с одной переменной и их системы;
решать текстовые задачи алгебраическим методом, интерпретировать полученные результат, проводить отбор решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значения аргумента по значению функции, заданной графиком или таблицей;
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций, строить их графики;
извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
решать следующие жизненно-практические задачи:
самостоятельно приобретать и применять знания в различных ситуациях;
работать в группах;
аргументировать и отстаивать свою точку зрения;
уметь слушать других; извлекать учебную информацию на основе сопоставительного анализа объектов;
пользоваться предметным указателем энциклопедий и справочников для нахождения информации
9 класс (105 ч)
Рациональные неравенства и их системы (15 ч)
Линейные и квадратные неравенства (повторение).
Рациональное неравенство. Метод интервалов.
Множества и Операции над ними.
Система неравенств. Решение системы неравенств.
Системы уравнений (19 ч)
Рациональное уравнение с двумя переменными. Решение уравнения р(х; у) = 0. Равносильные уравнения с двумя переменными. Формула расстояния между двумя точками координатной плоскости. График уравнения (х - а)2 + (у - в)2 =r 2. Система уравнений с двумя переменными. Решение системы уравнений. Неравенства и системы неравенств с двумя переменными.
Методы решения систем уравнений (метод подстановки, алгебраического сложения, введения новых переменных). Равносильность систем уравнений.
Системы уравнений как математические модели реальных ситуаций.
Числовые функции (25 ч)
Функция. Независимая переменная. Зависимая переменная. Область определения функции. Естественная область определения функции. Область значений функции.
Способы задания функции (аналитический, графический, табличный, словесный).
Свойства функций (монотонность, ограниченность, выпуклость, наибольшее и наименьшее значения, непрерывность). Исследование функций: у = С, у = kx + т, у = kx2, у =√ х, у = |х|, у = ах2 + bх + с.
Четные и нечетные функции. Алгоритм исследования функции на четность. Графики четной и нечётной функций.
Степенная функция с натуральным показателем, ее свойства и график. Степенная функция с отрицательным целым показателем, ее свойства и график.
Функция у =3√х , ее свойства и график.
Прогрессии (15 ч)
Числовая последовательность. Способы задания числовых последовательностей (аналитический, словесный, рекуррентный). Свойства числовых последовательностей.
Арифметическая прогрессия. Формула п-го члена. Формула суммы членов конечной арифметической прогрессии. Характеристическое свойство.
Геометрическая прогрессия. Формула n-го члена. Формула суммы членов конечной геометрической прогрессии. Характеристическое свойство. Прогрессии и банковские расчеты.
Элементы комбинаторики, статистики и теории вероятности (13 ч)
Комбинаторные задачи. Правило умножения. Факториал Перестановки.
Группировка информации. Общий ряд данных. Кратность варианты измерения. Табличное представление информации. Частота варианты. Графическое представление информации. Полигон распределения данных. Гистограмма. Числовые характеристики данных измерения (размах, мода, среднее значение).
Вероятность. Событие (случайное, достоверное, невозможное). Классическая вероятностная схема. Противоположные события. Несовместные события. Вероятность суммы двух событий. Вероятность противоположного события. Статистическая устойчивость. Статистическая вероятность.
Обобщающее повторение (18 ч)
Требования к математической подготовке учащихся 9 класса
должны знать: значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности; вероятностный характер различных процессов окружающего мира;
должны уметь: выполнять арифметические действия, сочетая устные и письменные приемы; находить значения корня натуральной степени, степени с рациональным показателем, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия со степенями с целыми показателями, с многочленами и алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратов корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные уравнения;
решать линейные и квадратные неравенства с одной переменной и их системы;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
находить значения функции, заданной формулой, таблицей, графиком по её аргументу; находить значения аргумента по значению функции, заданной графиком или таблицей;
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций, строить их графики;
извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
решать комбинаторные задачи путём систематического перебора возможных вариантов и с использованием правила умножения;
вычислять средние значения результатов измерений;
находить частоту события, используя собственные наблюдения и готовые статистические данные;
находить вероятности случайных событий в простейших случаях.
владеть компетенциями: познавательной, коммуникативной, информационной и рефлексивной. способны решать следующие жизненно-практические задачи: Самостоятельно приобретать и применять знания в различных ситуациях, работать в группах, аргументировать и отстаивать свою точку зрения, уметь слушать других, извлекать учебную информацию на основе сопоставительного анализа объектов, пользоваться предметным указателем энциклопедий и справочников для нахождения информации, самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем.
ТРЕБОВАНИЯ К УРОВНЮ подготовки выпускников 9 КЛАССОВ
В результате изучения математики выпускник должен:
знать/понимать
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для рещения математических и практических задач;
как математически определенные функций могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
Арифметика
Уметь:
•. выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
переходить от одной формы записи чисел к другой,, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;
выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней е целыми показателями и корней; находить значения числовых выражений;
округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и избытком, выполнять оценку числовых выражений;
пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;
устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;
интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;
Алгебра
уметь
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять
подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
решать линейные и квадратные неравенства с одной переменной и их системы;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
• распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего-члена и суммы нескольких первых членов;
находить значения функции, заданной формулой, таблицей, графиком, по ее аргументу; находить значение аргумента по значению функции, заданной графиком иди таблицей;
определять свойства функции по ее графику применять графические представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
интерпретации графиков реальных зависимостей между величинами;
Элементы логики, комбинаторики, статистики и теории вероятностей
уметь
проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;
вычислять средние значения результатов измерений;
находить частоту события, используя собственные наблюдения и готовые статистические данные;
находить вероятности случайных событий в простейших случаях;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выстраивания аргументации при доказательстве (в форме монолога и диалога);
распознавания логически некорректных рассуждений;
записи математических утверждений, доказательств;
анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
решения учебных и практических задач, требующих систематического перебора вариантов;
сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
понимания статистических утверждений.
Геометрия
7 класс (70ч)
Глава 1. Начальные геометрические сведения (12 часов)
Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.
Глава 2. Треугольники (18 часов)
Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.
Глава 3. Параллельные прямые (13часов)
Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.
Глава 4. Соотношения между сторонами и углами треугольника (20 часов)
Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.
Повторение. Решение задач. (7 часов)
Требования к уровню подготовки обучающихся в 7 классе
В ходе преподавания геометрии в 7 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
В результате изучения курса геометрии 7 класса обучающиеся должны:
знать/понимать
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь
пользоваться языком геометрии для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
вычислять значения геометрических величин (длин, углов, площадей, объемов), находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат, идеи симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
расчетов, включающих простейшие формулы;
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
8 класс
Вводное повторение 2 часа.
Глава 5. Четырехугольники (14 часов)
Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.
Глава 6. Площадь (14 часов)
Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.
Глава 7. Подобные треугольники (19 часов)
Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.
Глава 8. Окружность (17 часов)
Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.
9. Повторение. Решение задач. (4 часа)
Требования к уровню подготовки обучающихся в 8 классе
В ходе преподавания геометрии в 8 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
В результате изучения курса геометрии 8 класса обучающиеся должны:
знать/понимать
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь
пользоваться языком геометрии для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
в простейших случаях строить сечения и развертки пространственных тел;
проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
расчетов, включающих простейшие тригонометрические формулы;
решения геометрических задач с использованием тригонометрии
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
9 класс
Вводное повторение (2 часа)
Глава 9,10. Векторы. Метод координат. (18 часов)
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.
Глава 11. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. (11 часов)
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.
Глава 12. Длина окружности и площадь круга. (16 часов)
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.
Глава 13. Движения. (12 часов)
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.
Об аксиомах геометрии. (2 часа)
Беседа об аксиомах геометрии.
Повторение. Решение задач. (9часов)
Требования к уровню подготовки обучающихся в 9 классе
В ходе преподавания геометрии в 9 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
В результате изучения курса геометрии 9 класса обучающиеся должны:
знать/понимать
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь
пользоваться языком геометрии для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
в простейших случаях строить сечения и развертки пространственных тел;
проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
расчетов, включающих простейшие тригонометрические формулы;
решения геометрических задач с использованием тригонометрии
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Требования к уровню подготовки выпускников основной школы
Уметь:
распознавать плоские геометрические фигуры, различать их взаимное расположение, аргументировать суждения, используя определения, свойства, признаки;
изображать планиметрические фигуры, выполнять чертежи по условиям задач, осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их; представлять их сечения и развертки;
вычислять значения геометрических величин (длин, углов, площадей, объемов);
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя Дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать основные задачи на построение с помощью циркуля и линейки: угла, равного данному; биссектрисы данного угла; серединного перпендикуляра к отрезку; прямой, параллельной данной прямой; треугольника по трем сторонам;
решать простейшие планиметрические задачи в пространстве.
Применять полученные знания:
при построениях геометрическими инструментами (линейка, угольник, циркуль, транспортир);
для вычисления длин, площадей основных геометрических фигур с помощью формул (используя при необходимости справочники и технические средства).
VIII Описание учебно-методического и материально-технического обеспечения образовательного процесса
Настоящие требования к учебно-методическому и материально-техническому обеспечению учебного процесса по математике ориентированы, прежде всего, на создание необходимых условий для реализации требований к уровню подготовки выпускников, установленных стандартом и с учетом требований Санитарно-эпидемиологических правил и нормативов (СанПиН 2.4.2. 178-02).
1. Библиотечный фонд (книгопечатная продукция)
2. ПЕЧАТНЫЕ ПОСОБИЯ
3. ИНФОРМАЦИОННЫЕ СРЕДСТВА
4. Экранно-звуковые пособия
5. Технические средства обучения
6. УЧЕБНО-ПРАКТИЧЕСКОЕ И УЧЕБНО-ЛАБОРАТОРНОЕ ОБОРУДОВАНИЕ
7. СПЕЦИАЛИЗИРОВАННАЯ УЧЕБНАЯ МЕБЕЛЬ
№ Наименования объектов и средств материально-технического обеспечения
1. Библиотечный фонд (книгопечатная продукция)
1.1 Стандарт основного общего образования по математике
1.2 Стандарт среднего (полного) общего образования по математике (базовый уровень)
1.3 Примерная программа основного общего образования по математике
1.4 Авторские программы по курсам математики
1.5 Учебник по математике для 5-6 классов И.И.Зубарева, А.Г.Мордкович
1.6 Учебник по алгебре для 7-9 классов А.Г.Мордкович
1.7 Учебник по геометрии для 7-9 классов Л.С. Атанасян1.8 Рабочая тетрадь по математике для 5-6 классов
1.9 Рабочая тетрадь по алгебре для 7-9 классов
1.10 Рабочая тетрадь по геометрии для 7-9 классов
1.11 Дидактические материалы по математике для 5-6 классов
1.12 Дидактические материалы по алгебре для 7-9 классов
1.13 Дидактические материалы по геометрии для 7-9 классов
1.14 Учебные пособия по элективным курсам
1.15 Сборник контрольных работ по математике для 5-6 классов
1.16 Сборник контрольных работ по алгебре для 7-9 классов
1.17 Сборник контрольных работ по геометрии для 7-9 классов
1.18 Сборники экзаменационных работ для проведения государственной (итоговой) аттестации по математике
1.19 Научная, научно-популярная, историческая литература
1.20 Справочные пособия (энциклопедии, словари, сборники основных формул и т.п.)
1.21 Методические пособия для учителя
2. ПЕЧАТНЫЕ ПОСОБИЯ
2.1 Таблицы по математике для 5-6 классов
2.2 Таблицы по геометрии
2.3 Таблицы по алгебре для 7-9 классов
2.4 Портреты выдающихся деятелей математики
3. ИНФОРМАЦИОННЫЕ СРЕДСТВА
3.1 Мультимедийные обучающие программы и электронные учебные издания по основным разделам курса математики
3.2 Электронная база данных для создания тематических и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуальной работы
3.3. Инструментальная среда по математике
4. Экранно-звуковые пособия
4.1 Видеофильмы по истории развития математики, математических идей и методов
5. Технические средства обучения
5.1 Мультимедийный компьютер
5.2 Мультимедиапроектор5.3 Средства телекоммуникации
5.4 Диапроектор или графопроектор
5.5 Экран (на штативе или навесной)
6. УЧЕБНО-ПРАКТИЧЕСКОЕ И УЧЕБНО-ЛАБОРАТОРНОЕ ОБОРУДОВАНИЕ
6.1 Аудиторная доска с магнитной поверхностью и набором приспособлений для крепления таблиц
6.2 Доска магнитная с координатной сеткой
6.3 Комплект инструментов классных: линейка, транспортир, угольник (300, 600), угольник (450, 450), циркуль
6.4 Комплект стереометрических тел (демонстрационный)
6.5 Комплект стереометрических тел (раздаточный)
6.6 Набор планиметрических фигур
7. СПЕЦИАЛИЗИРОВАННАЯ УЧЕБНАЯ МЕБЕЛЬ
7.1 Компьютерный стол
7.2 Шкаф секционный для хранения оборудования
7.3 Шкаф секционный для хранения литературы и демонстрационного оборудования (с остекленной средней частью)
7.4 Стенд экспозиционный
7.5 Ящики для хранения таблиц
7.6 Штатив для таблиц