Большую роль в развитии математики сыграло его сочинение «Псаммит»-«О числе песчинок», в котором он показывает, как с помощью существовавшей системы счисления можно выражать сколь угодно большие числа. В качестве повода для своих рассуждений он использует
История математических открытий. Биография учёных математиков.
Русские меры: старинные русские меры длины (от меньших к большим):Ладонь = 10,16 смПядь = 17,78 смФут = 30,48 см [заимствовано из Европы?]Локоть = 45 см [~ 4 ладони, а не 6]Аршин = 4 пяди = 71,12 смШаг - около 71 см [почти аршин]Маховая сажень = 176 см [почти 4 локтя]Сажень = 3 аршина = 213,36 смКосая сажень = 248 смВерста = 500 (иногда 750) саженей (= 1500 аршин) = 1066,8 мТо есть, основные русские меры длины это: 1) пядь, 2) аршин (4 пяди), 3) сажень (3 аршина), 4) верста (500 саженей).
Письменных документов о Пифагоре Самосском не осталось, а по более поздним свидетельствам трудно восстановить подлинную картину его жизни и достижений. Известно, что Пифагор покинул свой родной остров Самос в Эгейском море у берегов Малой Азии в знак протеста против тирании правителя и уже в зрелом возрасте (по преданию в 40 лет) появился в греческом городе Кротоне на юге Италии. Пифагор и его последователи - пифагорейцы - образовали тайный союз, игравший немалую роль в жизни греческих колоний в Италии. Пифагорейцы узнавали друг друга по звездчатому пятиугольнику-пентаграмме.На учение Пифагора большое влияние оказала философия и религия Востока. Он много путешествовал по странам Востока: был в Египте и в Вавилоне. Там Пифагор познакомился и с восточной математикой. Математика стала частью его учения, и важнейшей частью.Пифагор:
Пифагорейцы верили, что в числовых закономерностях спрятана тайна мира. Мир чисел жил для пифагорейца особой жизнью, числа имели свой особый жизненный смысл. Числа, равные сумме своих делителей, воспринимались как совершенные (6, 28, 496, 8128); дружественными называли пары чисел, из которых каждое равнялось сумме делителей другого (например, 220 и 284). Пифагор впервые разделил числа на четные и нечетные, простые и составные, ввел понятие фигурного числа. В его школе были подробно рассмотрены пифагоровы тройки натуральных чисел, у которых квадрат одного равнялся сумме квадратов двух других (см. Ферма великая теорема). Пифагору приписывается высказывание: «Все есть число». К числам (а он имел в виду лишь натуральные числа) он хотел свести весь мир, и математику в частности. Но в самой школе Пифагора было сделано открытие, нарушавшее эту гармонию.
Было доказано, что у 2 не является рациональным числом, т.е. не выражается через натуральные числа. Естественно, что геометрия у Пифагора была подчинена арифметике, это ярко проявилось в теореме, носящей его имя и ставшей в дальнейшем основой применения численных методов в геометрии. (Позже Евклид вновь вывел на первое место геометрию, подчинив ей алгебру.) По-видимому, пифагорейцы знали правильные тела: тетраэдр, куб и додекаэдр.Пифагору приписывают систематическое введение доказательств в геометрию, создание планиметрии прямолинейных фигур, учения о подобии. С именем Пифагора связывают учение об арифметических, геометрических и гармонических пропорциях, средних. Следует заметить, что Пифагор считал Землю шаром, движущимся вокруг Солнца. Когда в XVI в. церковь начала ожесточенно преследовать учение Коперника, это учение упорно именовалось пифагорейским.
Работа советника в парламенте города Тулузы не мешала Ферма заниматься математикой. Постепенно он приобрел славу одного из первых математиков Франции, хотя и не писал книг (научных журналов еще не было), ограничиваясь лишь письмами к коллегам. Среди них были Р. Декарт, Ж. Дезарг, Ж. Роберваль и другие. Он соперничал с французским . ученым Р. Декартом в создании аналитической геометрии, общих методов решения задач на максимум и. минимум. Его приемы построения касательных к кривым, вычисления площадей криволинейных фигур, вычисления длин кривых прокладывали дорогу к созданию дифференциального и интегрального исчислений. С переписки П. Ферма и Б. Паскаля отсчитывает свою историю теория вероятностей. Имя Ферма носит основной принцип геометрической оптики, в силу которого свет в неоднородной среде выбирает путь, занимающий наименьшее время (впрочем, Ферма считал, что скорость света бесконечна, и формулировал принцип более туманно). Однако больше всего прославили Ферма работы по теории чисел.Пьер Ферма:
Математики Древней Греции со времен Пифагора коллекционировали диковинные факты о конкретных натуральных числах, иногда очень больших, но теорем о числах не доказывали (за несколькими исключениями). Лишь древнегреческий математик Диофант (III в. н. э.) написал книгу «Арифметика», в которой были и отрицательные числа, и элементы символики, но, прежде всего, многочисленные факты о решении в целых числах алгебраических уравнений с несколькими неизвестными (их стали называть диофантовыми). Эта книга (не полностью) стала известна в Европе в XVI в., а в 1621 г. она была издана во Франции и стала настольной книгой Ферма.
Ученый постоянно интересовался арифметическими задачами, обменивался сложными задачами с современниками. Начал Ферма с задач про магические квадраты и кубы, но постепенно переключился на закономерности натуральных чисел -арифметические теоремы. Несомненно влияние Диофанта на Ферма, и символично, что он записывает свои удивительные открытия на полях «Арифметики». Заметки и письма-вот и все, что осталось от занятий Ферма арифметикой. Ферма обнаружил, что число 2( в степени р-1) - 1 при простом р всегда делится на р (см. Ферма малая теорема), а число 22 + + 1 простое при k < 4. Он решил, что эти числа простые при всех k, но Л. Эйлер впоследствии показал, что при k = 5 имеется делитель 641. Эйлер также доказал гипотезу П. Ферма: простые числа вида 4k + 1 представляются в виде суммы квадратов (5 = 4+1; 13 = 9 + 4), а вида 4k + 3-нет.
Ферма занимают «невозможные» задачи - задачи, не имеющие решений. Он обнаружил, что нельзя найти прямоугольный треугольник с целочисленными сторонами, у которого площадь-точный квадрат Самое знаменитое утверждение о «невозможности»-великая теорема Ферма. С работ Ферма началась новая математическая наука-теория чисел.
Декарт далеко не сразу нашел свое место в жизни. Дворянин по происхождению, окончив коллеж в Ла-Флеше, он с головой окунается в светскую жизнь Парижа, затем бросает все ради занятий наукой.Декарт неторопливо продумывает контуры своего будущего учения -аналитического метода познания мира. Он накапливает жизненный опыт, несколько лет проводит в путешествиях. Декарт стремился и в философии и в любой другой науке найти математические законы, свести каждый вопрос или каждую задачу к математической. Он хотел создать такой универсальный математический метод, который позволил бы всякому овладевшему им решить любую задачу. В 1637 г. в Лейдене выходит 4 тома его «Философских опытов». Последний том назывался «Геометрия».Декарт отводил математике особое место в своей системе, он считал ее принципы установления истины образцом для других наук.Рене Декарт:
Главное достижение Декарта-построение аналитической геометрии (термин предложил И. Ньютон, см. Геометрия), в которой геометрические задачи переводились на язык алгебры при помощи метода координат. Нужно отметить, что у Декарта в точном виде еще не было того, что сегодня называется декартовой системой координат. Декарт начал с того, что перевел на алгебраический язык задачи на построение циркулем и линейкой (см. Геометрические построения), затем обнаружил, что любимые древними конические сечения-это то же самое, что кривые второго порядка, т.е. с алгебраической точки зрения следующий по сложности за прямыми (кривыми первого порядка) класс кривых. При переходе на алгебраический язык многие трудные геометрические задачи становятся почти тривиальными.
Немалой заслугой Декарта было введение удобных обозначений, сохранившихся до наших дней: латинских букв х, у, z—для неизвестных; а, Ь, с-для коэффициентов, х2, у5, а7 -для степеней. Он сформулировал основную теорему алгебры: «число корней алгебраического уравнения равно его степени», доказательство которой было получено лишь в конце XVIII в. К.Ф. Гауссом.Интересы Декарта не ограничиваются математикой, а включают механику, оптику, биологию. В 1649 г. Декарт после долгих колебаний переезжает в Швецию. Это решение оказалось для его здоровья роковым. Через полгода Декарт умер от пневмонии.
Архимед:
Об Архимеде - великом математике и механике - известно больше, чем о других ученых древности. Прежде всего достоверен год его смерти - год падения Сиракуз, когда ученый погиб от руки римского солдата. Впрочем, историки древности Полибий, Ливии, Плутарх мало рассказывали о его математических заслугах, от них до наших времен дошли сведения о чудесных изобретениях ученого, сделанных во время службы у царя Гие-рона II. Известна история о золотом венце царя. Чистоту его состава Архимед проверил при помощи найденного им закона выталкивающей силы, и его возгласе «Эврика!», т.е. «Нашел!». Другая легенда рассказывает, что Архимед соорудил систему блоков, с помощью которой один человек смог спустить на воду огромный корабль «Сирахоеия», Крылатыми стали произнесенные тогда слова Архимеда: «Дайте мне точку опоры, и я поверну Землю».Инженерный гений Архимеда с особой силой проявился при осаде Сиракуз, богатого торгового города на острове Сицилия.- великом математике и механике - известно больше, чем о других ученых древности. Прежде всего достоверен год его смерти - год падения Сиракуз, когда ученый погиб от руки римского солдата. Впрочем, историки древности Полибий, Ливии, Плутарх мало рассказывали о его математических заслугах, от них до наших времен дошли сведения о чудесных изобретениях ученого, сделанных во время службы у царя Гие-рона II. Известна история о золотом венце царя. Чистоту его состава Архимед проверил при помощи найденного им закона выталкивающей силы, и его возгласе «Эврика!», т.е. «Нашел!». Другая легенда рассказывает, что Архимед соорудил систему блоков, с помощью которой один человек смог спустить на воду огромный корабль «Сирахоеия», Крылатыми стали произнесенные тогда слова Архимеда: «Дайте мне точку опоры, и я поверну Землю». Инженерный гений Архимеда с особой силой проявился при осаде Сиракуз, богатого торгового города на острове Сицилия.
Воины римского консула Марцелла были надолго задержаны у стен города невиданными машинами: мощные катапульты прицельно стреляли каменными глыбами, в бойницах были установлены метательные машины, выбрасывающие грады ядер, береговые краны поворачивались за пределы стен и забрасывали корабли противника каменными и свинцовыми глыбами, крючья подхватывали корабли и бросали их вниз с большой высоты, системы вогнутых зеркал (в некоторых рассказах -щитов) поджигали корабли. В «Истории Марцелла» Плутарх описывает ужас, царивший в рядах римских воинов: «Как только они замечали, что из-за крепостной стены показывается веревка или бревно, они обращались в бегство с криком, что вот Архимед еще выдумал новую машину на их погибель».
Огромен вклад Архимеда и в развитие математики. Спираль Архимеда (см. Спирали), описываемая точкой, двигающейся по вращающемуся кругу, стояла особняком среди многочисленных кривых, известных его современникам. Следующая кинематически определенная кривая-циклоида-появилась только в XVII в. Архимед научился находить касательную к своей спирали (а его предшественники умели проводить касательные только к коническим сечениям), нашел площадь ее витка, а также площадь эллипса, поверхности конуса и шара, объемы шара и сферического сегмента. Особенно он гордился открытым им соотношением объема шара и описанного вокруг него цилиндра, которое равно 2:3 (см. Вписанные и описанные фигуры). Архимед много занимался и проблемой квадратуры круга (см. Знаменитые задачи древности). Ученый вычислил отношение длины окружности к диаметру (число П) и нашел, что оно заключено между 3 10/71 и 3 1/7.
Созданный им метод вычисления длины окружности и площади фигуры был существенным шагом к созданию дифференциального и интегрального исчислений, появившихся лишь 2000 лет спустя.Архимед нашел также сумму бесконечной геометрической прогрессии со знаменателем 1/4. В математике это был первый пример бесконечного ряда.Большую роль в развитии математики сыграло его сочинение «Псаммит»-«О числе песчинок», в котором он показывает, как с помощью существовавшей системы счисления можно выражать сколь угодно большие числа. В качестве повода для своих рассуждений он использует задачу о подсчете количества песчинок внутри видимой Вселенной. Тем самым было опровергнуто существовавшее тогда мнение о наличии таинственных «самых больших чисел».