КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ И ИТОГОВОЙ АТТЕСТАЦИИ учебной дисциплины «Математика»
МИНИСТЕРСТВО ОБРАЗОВАНИЯ КАЛИНИНГРАДСКОЙ ОБЛАСТИ
государственное бюджетное учреждение Калининградской области
профессиональная образовательная организация
«Озерский техникум природообустройства»
УТВЕРЖДАЮ:
заместитель директора поУПР
_____________И.В.Филипенко
Приказ № _____
от «__» ______2014г.
КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ
ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ И ИТОГОВОЙ АТТЕСТАЦИИ
учебной дисциплины «Математика»
В РАМКАХ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ
ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
21.02.04 «Землеустройство»
(код и наименование специальности /профессии,
специальностей/ профессий, группы специальностей/ профессий)
базовый уровень среднего профессионального обучения
(уровень образования)
г. Озёрск
2015 г.
Составлен в соответствии с
Федеральным государственным
образовательным стандартом
по специальности среднего
профессионального образования
21.02.04 «Землеустройство»
(код и наименование специальности)
Организация-разработчик:
Государственное бюджетное учреждение Калининградской области профессиональная образовательная организация «Озерский техникум природообустройства»
Составитель:____Л.И.Белякова
(подпись, ФИО)
Одобрена на заседании
предметно-цикловой комиссии
_____________________________
(№ протокола, дата)
Председатель ПЦК_____________
_____________________________
(подпись, ФИО)
1.Паспорт комплекта оценочных средств
1. Область применения комплекта оценочных средств
Комплект оценочных средств предназначен для оценки результатов освоения учебной дисциплины «Математика».
Таблица 1
Результаты освоения
(объекты оценивания)
Основные показатели оценки результата и их критерии Тип задания;
№ задания
Форма аттестации
(в соответствии с учебным планом)
В результате освоения дисциплины, обучающиеся должны уметь
применять методы математического анализа при решении профессиональных задач
Правильность и точность расчёта стандартных задач на нахождение площадей земельных участков
Задача№10, Контрольная работа, задание №10 Дифференцированный зачёт
Должны уметь
дифференцировать функции Дифференцирование функций, используя правила дифференцирования, и формулы дифференцирования Задачи№5, 6,7,11,12,21,33,34
Контрольная работа, задание №5,6,7,8 Дифференцированный зачёт
Должны уметь
вычислять вероятности случайных величин, их числовые характеристики Нахождение вероятности, математического ожидания, дисперсии Задачи№15,16,17,18,
19,22-27,35,36
Контрольная работа, задание №11,12 Дифференцированный зачёт
Должны уметь
составлять простые математические модели систем и процессов в сфере профессиональной деятельности Умение обрабатывать результаты полевых геодезических работ Задача№10, Контрольная работа, задание №10 Дифференцированный зачёт
В результате освоения дисциплины обучающийся должен знать:
о роли и месте математики в современном мире, общности ее понятий и представлений;
Понимание сущности и социальной значимости своей будущей профессии Вопросы1,17,35,41,42-44,50,58-60.
Задачи№22,16,23,8 Дифференцированный зачёт
должен знать основные понятия и методы математического анализа; дифференциального исчисления
Нахождение пределов функций, производных функций, вычисление простейших интегралов Вопросы1-6, 7-18,Задачи№1-4,30, 31,32, 8,9,13,14.
Контрольная работа,задание№9 Дифференцированный зачёт
должен знать основные понятия теории вероятностей и математической статистики Оценка вероятности событий, нахождение закона распределения дискретной случайной величины Вопросы45-55, Задачи№22-27.
Контрольная работа, задание№11,12 Дифференцированный зачёт
должен знать числовые характеристики статистического распределения Правильность составления вариационного ряда, гистограммы, полигона. Вопросы56-60, Дифференцированный зачёт
2.Комплект оценочных средств.
Задания для подготовки к дифференцированному зачёту.
Вопросы.
Понятие предела функции в точке.
Методы нахождения пределов. Раскрытие неопределённости типа( QUOTE ).
Методы нахождения пределов. Раскрытие неопределённости типа( QUOTE ).
Непрерывность функции. Точки разрыва функции.
Первый замечательный предел.
Второй замечательный предел. Вычисление числа «е».
Определение производной функции, её физический смысл.
Производная степенной функции.
Дифференцирование элементарных функций
Правила дифференцирования. Формулы производных суммы, произведения, частного.
Производная сложной функции.
Теорема о производной обратной функции. Производные обратных тригонометрических функций.
Геометрический смысл производной.
Экстремумы функции.
Наибольшее и наименьшее значения функции.
Построение графиков функций с помощью первой производной.
Дифференциал функции и его геометрический смысл. Приложения дифференциала к решению задач.
Вторая производная и производные высших порядков.
Приближение функции многочленом. Формула Тейлора.
Асимптоты графика функции.
Направления выпуклости графика функции. Точки перегиба.
Общая схема исследования функции.
Первообразная. Понятие неопределенного интеграла.
Вычисление интеграла от степенной функции.
Основные свойства неопределенного интеграла.
Методы интегрирования. Непосредственное интегрирование,
Методы интегрирования. Введение новой переменной,
Методы интегрирования. Интегрирование по частям.
Табличные интегралы. Нахождение неопределенных интегралов.
Понятие определенного интеграла.
Формула Ньютона - Лейбница.
Определённый интеграл. Вычисление определённого интеграла.
Основные свойства определенного интеграла.
Методы вычисления определенного интеграла.
Геометрический смысл определённого интеграла.
Площадь криволинейной трапеции.
Вычисление площадей плоских фигур.
Вычисление пути с помощью определённого интеграла.
Вычисление геометрических, механических, физических величин с помощью определенных интегралов.
Теория вероятностей. Основные понятия.
Случайные события. Вероятность события.
Комбинаторика. Основные понятия. Размещения.
Комбинаторика. Основные понятия. Перестановки.
Комбинаторика. Основные понятия. Сочетания.
Классическое определение вероятности.
Теорема сложения вероятностей.
Теорема умножения вероятностей.
Формула полной вероятности.
Формула Бернулли.
Случайная величина. Дискретная и непрерывная случайные величины. Закон распределения случайной величины.
Простейшие характеристики законов распределения.
Математическое ожидание дискретной случайной величины.
Дисперсия случайной величины. Среднее квадратическое отклонение случайной величины.
Простейшие понятия математической статистики. Вариационный ряд.
Эмпирическая функция распределения.
Полигон.
Гистограмма.
Характеристики вариационного ряда. Выборочная средняя.
Характеристики вариационного ряда. Выборочная дисперсия.
Характеристики вариационного ряда. Выборочное среднее квадратическое отклонение.
ЗАДАЧИ.
1.Вычислить предел
2.Вычислить предел
3.Вычислить предел
4.Вычислить предел
5. Найти производную функции.
6. Найти производную функции.
7. Найти производную функции.
8.Скорость движения тела задана уравнением (м/с). Найти путь, пройденный телом за вторую секунду.
9. Вычислить интеграл.
10.Вычислить площадь фигуры, ограниченной следующими линиями:
11. Найти производную функции:
12. Найти производную функции:
13. Вычислить интеграл:
14. Вычислить интеграл:
15. Бросают 2 игральные кости. Какова вероятность того, что в сумме на них выпадет 6 очков?
16. На экзамене 40 билетов. Дима не выучил 6 из них. Найдите вероятность того, что ему попадется выученный билет.
17. Пусть монета брошена 6 раз. Какова вероятность того, что хотя бы раз выпадет орел?
18. Простые числа распределены в натуральном ряду неравномерно. Числа от 1 до 1000 разбиты на 10 групп по 100 чисел в каждой и подсчитано число простых чисел в каждой сотне. Получен следующий ряд: 25, 21, 16, 16, 17, 14, 16, 14, 15, 14. Вычислите среднее значение и медиану этого ряда.
19. Найти дисперсию случайной величины числа выпавших очков при бросании игральной кости.
20. Вычислить интеграл:
21. Исследовать функцию и построить ее график.
22.Набирая номер телефона, абонент забыл две последние цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Какова вероятность того, что номер набран правильно?
23.Среди 100 электроламп 5 испорченных. Какова вероятность того, что выбранные наудачу 3 лампы окажутся исправными?
24.Из урны, содержащей 2 белых и 3 чёрных шара, наугад вынимают два шара. Найдите математическое ожидание и дисперсию случайной величины Х, если Х-число вынутых белых шаров.
25.В ящике 30 яблок: 10 красных, 15 желтых и 5 незрелых. Наудачу извлекается яблоко. Найти вероятность извлечения зрелого (красного или желтого) яблока.
26.Ветеринарный участок получает пакеты с контрольными пробами из хозяйств А, В и С. Вероятность получения пакета из хозяйства А –0,7, из хозяйства В – 0,2. Найти вероятность того, что очередной пакет будет получен из хозяйства С.
27.Всхожесть семян есть случайная величина. Исследования всхожести семян методом выборки представлены таблицей, в которой Х QUOTE - характеристики случайной величины, N QUOTE - частота появления характеристик выборки. Провести исследование выборки:
а) найти объем выборки;
б) составить закон распределения случайной величины Х;
в) найти выборочную среднюю дисперсию и среднее квадратическое отклонение.
X 4 7 10
N 10 5 15
28.Вычислить интеграл: QUOTE
29.Найти интеграл: QUOTE
30.Вычислить предел: QUOTE
31.Вычислить предел:
QUOTE
32.Вычислить предел:
33. Построить график функции: у = QUOTE
34. Найдите производную сложной функции: у = QUOTE
35.Имеется три ящика, содержащих 10 радиоламп. В первом ящике – 8, во втором – 7, в третьем – 9 стандартных радиоламп. Найти вероятность того, что все три вынутые лампы окажутся стандартными.
36.У сборщика имеется 3 конусных и 7 эллиптических валиков. Сборщик взял один валик, а затем второй. Найти вероятность того, что первый из взятых валиков – конусный, а второй – эллиптический.
Итоговая контрольная работа.
Вариант 1
Вычислить пределы:
1.
2.
3.
4.
limx→13x2-2x-1x2+4x+1limx→-22x2+3x-23x2+2x-8limx→23x-2-2x2-4lima→∞2a3-a+1a3+2a-5Найти производные функций:
5.
6.
7.
8.
fx=5x2-6x+10fx=x∙x5+2fx=x2-3x+42xfx=lnx3-3x+6Вычислить интегралы:
9.
011+xdxВычислить площадь фигуры, ограниченной следующими линиями:
10.
y=x;y=0;x=411.Задача.
Всхожесть семян есть случайная величина. Исследования всхожести семян методом выборки представлены таблицей, в которой Х QUOTE - характеристики случайной величины, N QUOTE - частота появления характеристик выборки. Провести исследование выборки:
а) найти объем выборки;
б) составить закон распределения случайной величины Х;
в) найти выборочную среднюю дисперсию и среднее квадратическое отклонение.
Х 2 4 9
N 10 20 30
12.Задача.
В ящике 30 яблок: 10 красных, 15 желтых и 5 незрелых. Наудачу извлекается яблоко. Найти вероятность извлечения зрелого (красного или желтого) яблока.
Вариант 2
Вычислить пределы:
1.
2.
3.
4.
Найти производные функций:
5.
6.
7.
8.
fx=3x4-cosx+π4+2x
Вычислить интегралы:
9.
Вычислить площадь фигуры, ограниченной следующими линиями:
10.
11.Задача.
Всхожесть семян есть случайная величина. Исследования всхожести семян методом выборки представлены таблицей, в которой Х QUOTE - характеристики случайной величины, N QUOTE - частота появления характеристик выборки. Провести исследование выборки:
а) найти объем выборки;
б) составить закон распределения случайной величины Х;
в) найти выборочную среднюю дисперсию и среднее квадратическое отклонение.
X 4 7 10
N 10 5 15
12.Задача.
У сборщика имеется 3 конусных и 7 эллиптических валиков. Сборщик взял один валик, а затем второй. Найти вероятность того, что первый из взятых валиков – конусный, а второй – эллиптический.
Вариант 3
Вычислить пределы:
1.
2.
3.
4.
Найти производные функций:
5.
6.
7.
8.
Вычислить интеграл:
9.
Вычислить площадь фигуры, ограниченной следующими линиями:
10.
11.Задача.
Всхожесть семян есть случайная величина. Исследования всхожести семян методом выборки представлены таблицей, в которой Х QUOTE - характеристики случайной величины, N QUOTE - частота появления характеристик выборки. Провести исследование выборки:
а) найти объем выборки;
б) составить закон распределения случайной величины Х;
в) найти выборочную среднюю дисперсию и среднее квадратическое отклонение.
X 1 5 8
N 8 16 40
12.Задача.
Ветеринарный участок получает пакеты с контрольными пробами из хозяйств А, В и С. Вероятность получения пакета из хозяйства А – 0,7, из хозяйства В – 0,2. Найти вероятность того, что очередной пакет будет получен из хозяйства С.
Вариант 4
Вычислить пределы:
1.
2.
3.
4.
limx→4x2-x-2x2-5x-4limx→-12x2-x-3x2-3x-4limx→-2x+6-2x2-4limx→∞2x2-3x+1x2+2x-3Найти производные функций:
5.
6.
7.
8.
fx=7x6+4tgx-8x+2fx=sinx(x2+4)fx=2x-1x+2fx=cos(5x+6)Вычислить интегралы:
9.
142+1xdxВычислить площадь фигуры, ограниченной следующими линиями:
10.y=2sinx;x=π2;x=π4;y=011.Задача.
Всхожесть семян есть случайная величина. Исследования всхожести семян методом выборки представлены таблицей, в которой Х QUOTE - характеристики случайной величины, N QUOTE - частота появления характеристик выборки. Провести исследование выборки:
а) найти объем выборки;
б) составить закон распределения случайной величины Х;
в) найти выборочную среднюю дисперсию и среднее квадратическое отклонение.
X 2 4 5
N 8 7 6
12.Задача.
Из слова «пчеловодство» выбирается наугад одна буква. Какова вероятность того, что это будет буква «о».
Критерии оценок
Контрольная работа проводится согласно календарно-тематического плана по дисциплине.
Контрольная работа содержит 4 варианта, которые утверждаются заместителем директора по УР.
Переписывание контрольной работы, за которую студент получил неудовлетворительную оценку, разрешается через 2 дня.
Оценка «Отлично» ставится, если все задания выполнены правильно и без ошибок.
Оценка «Хорошо» ставится, если выполнено 70% заданий полностью, и 10% с небольшими неточностями.
Оценка «Удовлетворительно» ставится, если выполнено полностью 50% заданий.
Оценка «Неудовлетворительно» ставится, если решено меньше 50% заданий.