Презентация к спецкурсу «Практикум по решению текстовых задач», 9 класс


«Практикум по решению текстовых задач» 9 класс Многообразие текстовых задач Задачи на пропорции. Задачи на процентные вычисления в жизненных ситуацияхЗадачи на движение:а) движение по прямой; относительность движения; б) движение по кругу; в) движение по рекеЗадачи на процентное содержание, смеси и сплавы. Задачи на совместную работу. Переход от словесной формулировки соотношений между величинами к алгебраической. Этапы решения: 1) этап составления математической модели (этап формализации) выбор неизвестного, обозначаемого, как правило, через x(или нескольких неизвестных, обозначаемых x,y,z...), и составление уравнения (или системы уравнений), связывающего некоторой зависимостью выбранное неизвестное с величинами, заданными условием задачи;2) этап работы с составленной моделью (этап внутримодельного решения)решение полученного уравнения (или системы уравнений);3) этап интерпретации: отбор решений по смыслу задачи. Задачи на пропорции Акции предприятия распределены между государством и частными лицами в отношении 3:5. Общая прибыль предприятия после уплаты налогов за год составила 32 млн. р. Какая сумма из этой прибыли должна пойти на выплату частным акционерам?Ответ укажите в рублях.  Для приготовления фарша взяли говядину и свинину в отношении 7:13. Какой процент в фарше составляет свинина?Масштаб карты 1:100 000. Чему равно расстояние между городами A и B (в км), если на карте оно составляет 2 см? Процентные вычисления в жизненных ситуациях   Товар на распродаже уценили на 20%, при этом он стал стоить 680 р. Сколько стоил товар до распродажи?Спортивный магазин проводит акцию: «Любая футболка по цене 300 рублей. При покупке двух футболок — скидка на вторую 60%». Сколько рублей придётся заплатить за покупку двух футболок? Плата за телефон составляет 340 рублей в месяц. В следующем году она увеличится на 2%. Сколько придётся платить ежемесячно за телефон в следующем году?Сберегательный банк начисляет на срочный вклад 20% годовых. Вкладчик положил на счет 800 р. Какая сумма будет на этом счете через год, если никаких операций со счетом проводиться не будет? Задачи на движение по прямой; относительность движения Из пункта А в пункт В, расстояние между которыми 19 км, вышел пешеход. Через полчаса навстречу ему из пункта В вышел турист и встретил пешехода в 9 км от В. Турист шёл со скоростью, на 1 км/ч большей, чем пешеход. Найдите скорость пешехода, шедшего из А. Поезд, двигаясь равномерно со скоростью 86 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 6 км/ч, за 18 секунд. Найдите длину поезда в метрах.Железнодорожный состав длиной в 1 км прошёл бы мимо столба за 1 мин., а через туннель (от входа локомотива до выхода последнего вагона) при той же скорости — за 3 мин. Какова длина туннеля (в км)? Задачи на движение на спуске и подъёме, по кругу Дорога между пунктами A и В состоит из подъёма и спуска, а её длина равна 14 км. Турист прошёл путь из А в В за 4 часа, из которых спуск занял 2 часа. С какой скоростью турист шёл на спуске, если его скорость на подъёме меньше его скорости на спуске на 3 км/ч? Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 3 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 9 минут назад. Найдите скорость первого бегуна, если известно, что она на 6 км/ч меньше скорости второго. Задачи на движение по водеОт пристани А вниз по течению реки к пристани В отплыл плот. Одновременно из В отплыл в А катер и через 25 минут встретил плот. После прибытия в А катер сразу развернулся и прибыл в В вместе с плотом. Больше или меньше часа заняло плавание? слайд В А Пусть собственная скорость катера: ; скорость течения: тогда скорость катера против течения равна: а по течению: Скорость плота равна: Путь . плот катер катер S C A B Подставим равенства (*), (**) в формулу: Задачи на движение по воде Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 5 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 2 км/ч, а собственная скорость лодки 6 км/ч? Моторная лодка прошла от одной пристани до другой, расстояние между которыми по реке равно 16 км, сделала стоянку на 40 мин и вернулась обратно через  после начала поездки. Найдите скорость течения реки, если известно, что скорость моторной лодки в стоячей воде равна 12 км/ч. Задачи, связанные с понятием «концентрация», «процентное содержание», «переливание» При смешивании первого раствора кислоты, концентрация которого 20%, и второго раствора этой же кислоты, концентрация которого 50%, получили раствор, содержащий 30% кислоты. В каком отношении были взяты первый и второй растворы? При смешивании первого раствора соли, концентрация которого 40%, и второго раствора этой же соли, концентрация которого 48%, получился раствор с концентрацией 42%. В каком отношении были взяты первый и второй растворы? Задачи, связанные с понятием «концентрация», «процентное содержание», «переливание»  Смешав 60%−ый и 30%−ый растворы кислоты и добавив 5 кг чистой воды, получили 20%−ый раствор кислоты. Если бы вместо 5 кг воды добавили 5 кг 90%−го раствора той же кислоты, то получили бы 70%−ый раствор кислоты. Сколько килограммов 60%−го раствора использовали для получения смеси? Смешали некоторое количество 10-процентного раствора некоторого вещества с таким же количеством 12-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора? Задачи на сплавы Имеется два сплава с разным содержанием меди: в первом содержится 60%, а во втором — 45% меди. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 55% меди? Первый сплав содержит 5% меди, второй — 13% меди. Масса второго сплава больше массы первого на 4 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Задачи на проценты На пост главы администрации города претендовало три кандидата: Журавлёв, Зайцев, Иванов. Во время выборов за Иванова было отдано в 2 раза больше голосов, чем за Журавлёва, а за Зайцева — в 3 раза больше, чем за Журавлёва и Иванова вместе. Сколько процентов голосов было отдано за победителя? Свежие фрукты содержат 80% воды, а высушенные — 28%. Сколько сухих фруктов получится из 288 кг свежих фруктов?Свежие фрукты содержат 86 % воды, а высушенные — 23 %. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов? Задачи на бассейн, заполняемый одновременно разными трубами Две трубы наполняют бассейн за 8 часов 45 минут, а одна первая труба наполняет бассейн за 21 часов. За сколько часов наполняет бассейн одна вторая труба? Первая труба пропускает на 2 литра воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 130 литров она заполняет на 4 минуты быстрее, чем первая труба заполняет резервуар объёмом 136 литров? Задачи, в которых требуется найти производительность труда Первый рабочий за час делает на 10 деталей больше, чем второй, и выполняет заказ, состоящий из 60 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий? Три бригады изготовили вместе 266 деталей. Известно, что вторая бригада изготовила деталей в 4 раза больше, чем первая и на 5 деталей меньше, чем третья. На сколько деталей больше изготовила третья бригада, чем первая. Задачи, в которых требуется определить время, затраченное на выполнение предусмотренного объёма работы Игорь и Паша красят забор за 20 часов. Паша и Володя красят этот же забор за 24 часа, а Володя и Игорь — за 30 часов. За сколько часов мальчики покрасят забор, работая втроём? Два оператора, работая вместе, могут набрать текст газеты объявлений за 8 ч. Если первый оператор будет работать 3 ч, а второй 12 ч, то они выполнят только 75% всей работы. За какое время может набрать весь текст каждый оператор, работая отдельно? Логические задачи Из пяти следующих утверждений о результатах матча хоккейных команд "Транспортир" и "Линейка" четыре истинны, а одно — ложно. Определите, с каким счетом закончился матч, и укажите победителя (если матч завершился победой одной из команд). Ответ обоснуйте. Кролик утверждает, что вчера Винни-Пух съел не менее 9 баночек мёда, Пятачок — что не менее 8 баночек, ослик Иа — что не менее 7. Сколько баночек мёда съел вчера Винни-Пух, если из трех этих утверждений истинно только одно?