Конспект урока по теме Синус, косинус и тангенс острого угла прямоугольного треугольника (9 класс)

Тема урока: Синус, Косинус и Тангенс острого угла прямоугольного треугольника.
Дата проведения: 03. 03. 2011г.
Цели:
Образовательная: Ввести понятие синуса, косинуса и тангенса острого угла прямоугольного треугольника и провести первичное закрепление по формированию умений решать задачи на вычисление элементов прямоугольного треугольника.
Развивающая: Развивать внимательность учащихся.
Воспитательная: Вызвать у учащихся познавательный интерес к новым знаниям.

Оборудование: Компьютер с проектором, интерактивная доска, презентация (приложение 1)
Литература: Атаносян Л.С.: Учебник для 7-9 классов средней школы [Текст] /. - М.: Просвещение, 2006.
План урока
Организационный момент (1 мин.)
Актуализация знаний учащихся (10 мин.)
Изучение нового материала (15-17 мин.)
Закрепление изученного материала (7-10 мин.)
Подведение итогов занятия (3 мин.)
Домашнее задание (2 мин.)





Ход урока
Этап урока
Деятельность учителя
Деятельность учащихся


Организационный момент


Актуализация знаний


























































































































Изучение нового материала



































































































































































































Закрепление изученного материала




































































Итоги урока


















Домашнее задание



(Дожидаюсь тишины)
- Здравствуйте, садитесь!





- Сегодня мы приступаем к изучению новой темы, но к какой, мы узнаем, когда вы разгадаете ребус и загадки.
- Разгадайте ребус (слайд 1)
13 EMBED PowerPoint.Slide.12 1415

-Правильно! (демонстрирую слайд 2 с ответом)
- Следующий (слайд 3): отгадайте загадку
13 EMBED PowerPoint.Slide.12 1415
(демонстрирую слайд 4 с правильным ответом)
- И последняя загадка (слайд 5):

13 EMBED PowerPoint.Slide.12 1415
(демонстрирую слайд 6)
- Молодцы! Вы верно отгадали все три загадки и тема нашего сегодняшнего урока: (слайд 7)
13 EMBED PowerPoint.Slide.12 1415
- Скажите мне, пожалуйста, какой треугольник называется прямоугольным?
- Посмотрите на экран и назовите, под какими цветами спрятались прямоугольные треугольники? (слайд 8)
13 EMBED PowerPoint.Slide.12 1415
- Правильно! А чему равна сумма углов треугольника?
- Скажите мне, пожалуйста, как называются стороны в прямоугольном треугольнике?
- Что называется гипотенузой?



- Что называется катетами?

- Вспомним свойства прямоугольного треугольника. Чему равна сумма двух острых углов в прямоугольном треугольнике?

- Чему равен катет, лежащий против угла в 300?

- Устно рассмотрим такую задачу: Даны два треугольника АВС и ДКМ. Доказать, что ( АВС ~( ДКМ.
а)



б)








в)







- Таким образом, мы повторили все три признака подобия треугольников.
- Сформулируйте теорему Пифагора.


- Раньше говорили, что если человек не знает т. Пифагора, он не заботится о своей чести. Трудно было представить образованного человека, который не знал бы что такое синус, косинус и тангенс. Приходилось ли вам когда-нибудь слышать эти понятия? И что они обозначают?
- Сегодня вы это узнаете!!!
- Цель нашего урока: ввести понятие синуса, косинуса и тангенса острого угла прямоугольного треугольника и порешать задачи на вычисление элементов прямоугольного треугольника.

- Рассмотрим треугольник АВС с прямым углом С. Назовите гипотенузу и катеты? (слайд 9)
13 EMBED PowerPoint.Slide.12 1415
- Сколько острых углов в этом треугольнике?
- Мы в данном треугольнике рассмотрим угол В, он помечен красным цветом.
- Рассмотрим катет АС. Как он расположен относительно угла В?
- Значит, катет АС будет противолежащим к углу В.
- Рассмотрим катет ВС. Как он расположен относительно угла В?
- Катет ВС прилежит к углу В, значит катет ВС – прилежащий.
- Перечертите себе этот треугольник и подпишите катеты
- Рассмотрим ещё один прямоугольный треугольник (слайд 10)
13 EMBED PowerPoint.Slide.12 1415
- В данном треугольнике рассмотрим катеты относительно острого угла А.
- Каким по отношению к углу А будет катет ВС?


- Каким по отношению к углу А будет катет АС?
- Перечертите себе этот треугольник и подпишите катеты
- А сейчас, на основании только что изученного, мы и введём понятия синуса, косинуса и тангенса. (слайд 11)
- Введём обозначения: синус угла ( обозначается sin(, и читается «синус альфа»;
cos( - «косинус альфа»;
tg( - «тангенс альфа».
- Вернёмся к слайду 10 и, согласно определений синуса, косинуса и тангенса, запишем их в виде формул.
- Что такое синус угла А?


- Как, согласно данному определению, запишется sinА?
- Верно! Пометим эту формулу цифрой (1).
- Что называется косинусом угла А?
- Как, согласно данному определению, запишется cosА?
- Верно! Пометим эту формулу цифрой (2).

- Что называется тангенсом угла А?

- Как, согласно данному определению, запишется tgА?
- Верно! Пометим формулу цифрой (3).
- Выполним задание (слайд 12)
13 EMBED PowerPoint.Slide.12 1415
- Нужно найти sinB, cosB, tgB?

(слайд 13)
13 EMBED PowerPoint.Slide.12 1415
Нужно найти sinА, cosА, tgА?
(слайд 14)
13 EMBED PowerPoint.Slide.12 1415
- Правильно, Молодцы!!!
- Найти синус, косинус и тангенс углов. (слайд 15)
13 EMBED PowerPoint.Slide.12 1415
(при выполнении всех этих заданий, ученики проговаривают определения)
- Из формул (1) и (2) найдём их отношение: (слайд 16)
13 EMBED PowerPoint.Slide.12 1415
- Сравнивая последнее с формулой (3), чему равен tgА?
- Верно! (слайд 17)
13 EMBED PowerPoint.Slide.12 1415
Демонстрирую (слайд 18)
13 EMBED PowerPoint.Slide.12 1415
- Докажем это!
- Док-во: Пусть АВС и А1В1С1 – два треугольника.
- Какие это треугольники?

- Из условия теоремы, углы А и А1 какие?
- Тогда какими будут эти треугольники?


- Верно, а поэтому

- Из этих равенств следует, что

- Посмотрите на эти треугольники, и скажите, отношение и , чем будут в этих треугольниках?

-
-

- Что и требовалось доказать.
Демонстрирую (слайд 19)
13 EMBED PowerPoint.Slide.12 1415
- Докажем равенство:
- Найдём сначала в этом треугольнике sinА и cosА
- Перепишем левую часть уравнения, получим



- Для треугольника АВС применим т. Пифагора, что мы получим?
- Так, тогда что мы можем сделать с числителем дроби?
-
-Т.е.мы получили, что (слайд 20)
13 EMBED PowerPoint.Slide.12 1415

- Запишите задание №1:
Найти синус, косинус и тангенс углов А и В треугольника АВС с прямым углом С, если: а) ВС=6см; АВ=10см. б) АС=9 см; АВ=41см.
- Для решения задачи вызываю ученика к доске.
- Запишите, что нам дано, что надо найти и решение.

- Начертите прямоугольный треугольник, отметьте в нём прямой угол и известные стороны.
- Найдём sinА=? Чем для этого воспользуемся?


- Чем для этого воспользуемся?

- Всё ли нам известно для нахождения cosА ?
- Мы его можем как-нибудь найти?



- Верно! Чему тогда будет равен cosА ?






- Правильно! Осталось найти sinB =? cosB =? tgB =?



- Под буквой б) выполните самостоятельно (на выполнение задания даю 3-4 минуты)
- Чему у вас равен sinА =?
- cosА =?
- tgА =?
- sinB =?
- cosB =?
- tgB =?
- Правильно! Молодцы! А теперь следующее задание:
В прямоугольном треугольнике АВС гипотенуза АВ = 5 см, sinА=0,6. Найти катет ВС?
- Вызываю ученика к доске.
- Запишите, что нам дано, что надо найти и решение.

- Начертите прямоугольный треугольник, отметьте в нём прямой угол, известную сторону.
- Т.к. нам дан синус угла А, то с него и начнём рассуждать.
- Запишите синус А согласно определению.
- Т.к. левые части равны, значит?

- Выразим АС.
- Как найдём ВС?
- Правильно! Молодец!!!

- Подведём итоги нашего урока:
- Какой катет называется противолежащим?
- Какой катет называется прилежащим?

- Что называется синусом угла?



- Что называется косинусом угла?

- Что называется тангенсом угла?


- Чему равен tgА?

- Назовите основное тригонометрическое тождество?

- Запишите домашнее задание:
1)п. 66, выучить все определения и формулы, которые мы записали сегодня на уроке.
2) Выполнить №591
- Всем спасибо за урок!!! До свидания!!!

Усаживаются на свои места.









- Синус











- Косинус


















- Тангенс









Записывают тему урока в тетради






- Это треугольник, у которого один из углов прямой.
- Чёрный и лиловый









- Сумма углов треугольника равна 1800
- Гипотенуза и катеты.


- Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой.
- Две другие стороны в прямоугольном треугольнике


- 900



- Катет, лежащий против угла в 300, равен половине гипотенузы.
- Данные треугольники будут подобными по первому признаку, так как два угла одного треугольника, соответственно равны двум углам др. треугольника, то такие треугольники подобны.
- Треугольники будут подобными по второму признаку, т.к. две стороны одного треугольника, пропорциональны двум сторонам др. треугольника и углы, заключённые между сторонами равны.
- Треугольники будут подобными по третьему признаку, т.к. три стороны одного треугольника, пропорциональны трём сторонам др. треугольника, то такие треугольники подобны.





- В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.







Ребята высказывают свои мнения.











- АВ – гипотенуза, АС и ВС – катеты.







- Два острых угла




- Катет АС находится напротив угла В.



- Катет ВС находится на углу В.



Зарисовывают со слайда.















- Катет ВС лежит напротив угла А, значит ВС –прилежащий к углу А.

- АС прилежит к углу А, значит АС – прилежащий.
Зарисовывают со слайда.

Записывают определения в тетради.


Записывают в тетради








- это отношение противолежащего катета к гипотенузе
- sinА =

Записывают формулу

- Отношение прилежащего катета к гипотенузе

- cosА =

Записывают формулу


- Отношение противолежащего катета к прилежащему.
- tgА =

Записывают формулу









- sinB =
- cosB =
- tgB =









- sinА =
- cosА =
- tgА =





- sinА =
- cosА =
- tgА =

- sinB =
- cosB =
- tgB =













- tgА =


Записывают в тетрадь




Записывают формулировку и чертят треугольники







- Прямоугольные, с прямыми углами С и С1
- Равные.

- Подобными, по первому признаку.






- sinА = , sinА1 = , а значит sinА = sinА1



- cosА= cosА1

- tgА = tgА1


Записывают в тетради






-
-






- АВ2 = АС2 + ВС2


- АС2 + ВС2 заменить на АВ2



Записывают в тетради






Записывают задания






а) Дано:
ВС = 6 см
АВ = 10 см
Найти: sinА =? cosА =?tgА =?
sinB =? cosB =?tgB =?
Решение:



- Определением синуса угла, тогда sinА=

- Найдём cosА =? По определению косинуса cosА =
- Нет, неизвестен катет АС.

- Да, по т. Пифагора АВ2 = АС2 + ВС2, отсюда выразим АС2 = АВ2 - ВС2, вычислим АС2 = 100 - 36 = 64
АС=8 см.
- cosА =

- Теперь найдём tgА =? Он будет равен отношению синуса к косинусу этого угла,

- tgА = =

- sinB = sinB =

- cosB = cosB =

- tgB = tgB =
- Самостоятельно решают.


-
-
-
-
-
-


Записывают задание в тетради.


Дано: (АВС, АВ = 5 см, sinА=0,6.
Найти: ВС=?
Решение:



- sinА=0,6.

- sinА=

- Значит равны и правые, т.е.
- 0,6=
- АС=0,6(5=3
- ПО т, Пифагора, ВС2= АВ2 - АС2; ВС2 = 25 - 9 = 16, ВС=4.
Ответ: ВС=4 см

- Который лежит против острого угла.
- Это катет, который прилежит к этому углу.

- Синусом угла называется отношение противолежащего катета к гипотенузе

- Косинусом угла называется отношение прилежащего катета к гипотенузе
- Тангенсом угла называется отношение противолежащего катета к прилежащему.
- tgА =

- sin2А + cos2А = 1


Записывают домашнее задание в тетрадь.





Root Entry