Рабочая программа по математике для 5-9 классов (ФГОС) (5-6 математика, 7-9 кл алгебра/геометрия)
МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ ГОРОДА НОВОСИБИРСКА
42672015049500«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 71»
630010, г. Новосибирск, 3-й Почтовый переулок, дом № 21,
телефон/факс: 240-08-55, e-mail: sch_71_nsk@nios.ruРассмотрено
Руководитель
методического
объединения учителей _______________________
________/______________/
ФИО
Протокол №_______
от «___» __________2016 г Согласовано
Заместитель
директора по УВР
_________/____________/
ФИО
«___» ___________2016 г Утверждаю
Директор школы
__________/_____________/
ФИО
Приказ №______
от «___» ___________2016 г
Рабочая программа
по предмету «Математика»
для 5 – 9 классов
(базовый уровень)
( на основе ФГОС ООО)
Составитель программы Тимофеева Ольга Викторовна
(Ф.И.О. учителя-составителя программы,
квалификационная категория)
СОДЕРЖАНИЕ
Структура программы……………………………………………………
Содержание математического образования……………………………
Результаты изучения учебного предмета……………………………….
Планируемые результаты изучения учебного предмета, курса……….
Содержание основного общего образования по учебному предмету…
Тематическое планирование с определением основных видов
учебной деятельности и метапредметных умений и навыков…………
Оценка планируемых результатов………………………………………
Особенности оценки предметных результатов………………….
Уровни подготовки учащихся и критерии успешности
обучения по математике…………………………………………
Критерии и нормы оценки знаний, умений и навыков
обучающихся по математике…………………………………….
Оценка письменных работ по математике………………
Оценка устных ответов по математике…………………..
Общая классификация ошибок…………………………………
Структура программы
Программа составлена на основе
Федерального Государственного образовательного стандарта основного общего образования, утверждённого приказом Министерства образования и науки РФ от 17.12. 2010г. №1897;
Учебного плана МБОУ «Основная общеобразовательная школа №71» г.Новосибирска;
Программа основного общего образования по математике содержит следующие разделы:
Содержание курса, включающее перечень основного изучаемого материала, распределенного по содержательным разделам.
Планируемые результаты.
Тематическое планирование с описанием видов учебной деятельности учащихся 5-9 классов и указанием примерного числа часов на изучение соответствующего материала.
Критерии оценивания.
Содержание математического образования
Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. Оно в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей обще-интеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.
Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.
Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.
Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.
Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности - умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.
Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах.
Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.
Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.
Результаты изучения учебного предмета
Программа предполагает достижение следующих личностных, метапредметных и предметных результатов.
В личностных результатах сформированность:
ответственного отношения к учению, готовность и способность обучающихся к самореализации и самообразованию на основе развитой мотивации учебной деятельности и личностного смысла изучения математики, заинтересованность в приобретении и расширении математических знаний и способов действий, осознанность построения индивидуальной образовательной траектории;
коммуникативной компетентности в общении, в учебно-исследовательской, творческой и других видах деятельности по предмету, которая выражается в умении ясно, точно, грамотно излагать свои мысли в устной и письменной речи, выстраивать аргументацию и вести конструктивный диалог, приводить примеры и контрпримеры, а также понимать и уважать позицию собеседника, достигать взаимопонимания, сотрудничать для достижения общих результатов;
целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики. Сформированность представления об изучаемых математических понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений;
логического мышления: критичности (умение распознавать логически некорректные высказывания), креативности (собственная аргументация, опровержения, постановка задач, формулировка проблем, исследовательский проект и т.д.).
В метапредметных результатах сформированность:
способности самостоятельно ставить цели учебной и исследовательской деятельности, планировать, осуществлять, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями её выполнения;
умения самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
умения находить необходимую информацию в различных источниках (в справочниках, литературе, Интернете), представлять информацию в различной форме (словесной, табличной, графической, символической), обрабатывать, хранить и передавать информацию в соответствии с познавательными или коммуникативными задачами;
владения приёмами умственных действий: определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родо -видовых и причинно-следственных связей, построения умозаключений индуктивного, дедуктивного характера или по аналогии;
умения организовывать совместную учебную деятельность с учителем и сверстниками: определять цели, распределять функции, взаимодействовать в группе, выдвигать гипотезы, находить решение проблемы, разрешать конфликты на основе согласования позиции и учёта интересов, аргументировать и отстаивать своё мнение.
В предметных результатах сформированность:
умений работать с математическим текстом, точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, графический, табличный), доказывать математические утверждения;
умения использовать базовые понятия из основных разделов содержаний (число, функция, уравнение, неравенство, вероятность, множество, доказательство и др.);
представлений о числе и числовых системах от натуральных до действительных чисел; практических навыков выполнения устных, письменных, инструментальных вычислений, вычислительной культуры;
представлений о простейших геометрических фигурах, пространственных телах и их свойствах; и умений в их изображении;
умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объёмов простейших геометрических фигур;
умения использовать символьный язык алгебры, приёмы тождественных преобразований рациональных выражений, решения уравнений, неравенств и их систем; идею координат на плоскости для интерпретации решения уравнений, неравенств и их систем; алгебраического аппарата для решения математических и нематематических задач;
умения использовать систему функциональных понятий, функционально-графических представлений для описания и анализа реальных зависимостей;
представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
приёмов владения различными языками математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
умения применять изученные понятия, аппарат различных разделов курса к решению межпредметных задач и задач повседневной жизни.
Планируемые результаты изучения учебного предмета, курса
Выпускник научится в 5-6 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)
Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность;
задавать множества перечислением их элементов;
находить пересечение, объединение, подмножество в простейших ситуациях.
В повседневной жизни и при изучении других предметов:
распознавать логически некорректные высказывания.
Числа
Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;
использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;
использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
выполнять округление рациональных чисел в соответствии с правилами;
сравнивать рациональные числа.
В повседневной жизни и при изучении других предметов:
оценивать результаты вычислений при решении практических задач;
выполнять сравнение чисел в реальных ситуациях;
составлять числовые выражения при решении практических задач и задач из других учебных предметов.
Статистика и теория вероятностей
Представлять данные в виде таблиц, диаграмм,
читать информацию, представленную в виде таблицы, диаграммы.
Текстовые задачи
Решать несложные сюжетные задачи разных типов на все арифметические действия;
строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;
осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
составлять план решения задачи;
выделять этапы решения задачи;
интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
решать задачи на нахождение части числа и числа по его части;
решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;
решать несложные логические задачи методом рассуждений.
В повседневной жизни и при изучении других предметов:
выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)
Наглядная геометрия
Геометрические фигуры
Оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырехугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.
В повседневной жизни и при изучении других предметов:
решать практические задачи с применением простейших свойств фигур.
Измерения и вычисления
выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
вычислять площади прямоугольников.
В повседневной жизни и при изучении других предметов:
вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;
выполнять простейшие построения и измерения на местности, необходимые в реальной жизни.
История математики
описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.
Выпускник получит возможность научиться в 5-6 классах (для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях)Элементы теории множеств и математической логики
Оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,
определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания.
В повседневной жизни и при изучении других предметов:
распознавать логически некорректные высказывания;
строить цепочки умозаключений на основе использования правил логики.
Числа
Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;
понимать и объяснять смысл позиционной записи натурального числа;
выполнять вычисления, в том числе с использованием приемов рациональных вычислений, обосновывать алгоритмы выполнения действий;
использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;
выполнять округление рациональных чисел с заданной точностью;
упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;
находить НОД и НОК чисел и использовать их при решении зада;.
оперировать понятием модуль числа, геометрическая интерпретация модуля числа.
В повседневной жизни и при изучении других предметов:
применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;
составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов.
Уравнения и неравенства
Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство.
Статистика и теория вероятностей
Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,
извлекать, информацию, представленную в таблицах, на диаграммах;
составлять таблицы, строить диаграммы на основе данных.
В повседневной жизни и при изучении других предметов:
извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.
Текстовые задачи
Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
моделировать рассуждения при поиске решения задач с помощью граф-схемы;
выделять этапы решения задачи и содержание каждого этапа;
интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;
решать разнообразные задачи «на части»,
решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.
В повседневной жизни и при изучении других предметов:
выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
решать задачи на движение по реке, рассматривая разные системы отсчета.
Наглядная геометрия
Геометрические фигуры
Извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
изображать изучаемые фигуры от руки и с помощью компьютерных инструментов.
Измерения и вычисления
выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
вычислять площади прямоугольников, квадратов, объемы прямоугольных параллелепипедов, кубов.
В повседневной жизни и при изучении других предметов:
вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объемы комнат;
выполнять простейшие построения на местности, необходимые в реальной жизни;
оценивать размеры реальных объектов окружающего мира.
История математики
Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей.
Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)Элементы теории множеств и математической логики
Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность;
задавать множества перечислением их элементов;
находить пересечение, объединение, подмножество в простейших ситуациях;
оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;
приводить примеры и контрпримеры для подтверждения своих высказываний.
В повседневной жизни и при изучении других предметов:
использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.
Числа
Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;
использовать свойства чисел и правила действий при выполнении вычислений;
использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
выполнять округление рациональных чисел в соответствии с правилами;
оценивать значение квадратного корня из положительного целого числа;
распознавать рациональные и иррациональные числа;
сравнивать числа.
В повседневной жизни и при изучении других предметов:
оценивать результаты вычислений при решении практических задач;
выполнять сравнение чисел в реальных ситуациях;
составлять числовые выражения при решении практических задач и задач из других учебных предметов.
Тождественные преобразования
Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;
выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;
использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;
выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.
В повседневной жизни и при изучении других предметов:
понимать смысл записи числа в стандартном виде;
оперировать на базовом уровне понятием «стандартная запись числа».
Уравнения и неравенства
Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;
проверять справедливость числовых равенств и неравенств;
решать линейные неравенства и несложные неравенства, сводящиеся к линейным;
решать системы несложных линейных уравнений, неравенств;
проверять, является ли данное число решением уравнения (неравенства);
решать квадратные уравнения по формуле корней квадратного уравнения;
изображать решения неравенств и их систем на числовой прямой.
В повседневной жизни и при изучении других предметов:
составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.
Функции
Находить значение функции по заданному значению аргумента;
находить значение аргумента по заданному значению функции в несложных ситуациях;
определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;
по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;
строить график линейной функции;
проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);
определять приближенные значения координат точки пересечения графиков функций;
оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчетом без применения формул.
В повседневной жизни и при изучении других предметов:
использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);
использовать свойства линейной функции и ее график при решении задач из других учебных предметов.
Статистика и теория вероятностей
Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;
решать простейшие комбинаторные задачи методом прямого и организованного перебора;
представлять данные в виде таблиц, диаграмм, графиков;
читать информацию, представленную в виде таблицы, диаграммы, графика;
определять основные статистические характеристики числовых наборов;
оценивать вероятность события в простейших случаях;
иметь представление о роли закона больших чисел в массовых явлениях.
В повседневной жизни и при изучении других предметов:
оценивать количество возможных вариантов методом перебора;
иметь представление о роли практически достоверных и маловероятных событий;
сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;
оценивать вероятность реальных событий и явлений в несложных ситуациях.
Текстовые задачи
Решать несложные сюжетные задачи разных типов на все арифметические действия;
строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;
осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
составлять план решения задачи;
выделять этапы решения задачи;
интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
решать задачи на нахождение части числа и числа по его части;
решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;
решать несложные логические задачи методом рассуждений.
В повседневной жизни и при изучении других предметов:
выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).
Геометрические фигуры
Оперировать на базовом уровне понятиями геометрических фигур;
извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;
применять для решения задач геометрические факты, если условия их применения заданы в явной форме;
решать задачи на нахождение геометрических величин по образцам или алгоритмам.
В повседневной жизни и при изучении других предметов:
использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания.
Отношения
Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.
В повседневной жизни и при изучении других предметов:
использовать отношения для решения простейших задач, возникающих в реальной жизни.
Измерения и вычисления
Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
применять формулы периметра, площади и объема, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;
применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.
В повседневной жизни и при изучении других предметов:
вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни.
Геометрические построения
Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.
В повседневной жизни и при изучении других предметов:
выполнять простейшие построения на местности, необходимые в реальной жизни.
Геометрические преобразования
Строить фигуру, симметричную данной фигуре относительно оси и точки.
В повседневной жизни и при изучении других предметов:
распознавать движение объектов в окружающем мире;
распознавать симметричные фигуры в окружающем мире.
Векторы и координаты на плоскости
Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости;
определять приближенно координаты точки по ее изображению на координатной плоскости.
В повседневной жизни и при изучении других предметов:
использовать векторы для решения простейших задач на определение скорости относительного движения.
История математики
Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
понимать роль математики в развитии России.
Методы математики
Выбирать подходящий изученный метод для решения изученных типов математических задач;
Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.
Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углубленном уровняхЭлементы теории множеств и математической логики
Оперировать понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;
изображать множества и отношение множеств с помощью кругов Эйлера;
определять принадлежность элемента множеству, объединению и пересечению множеств;
задавать множество с помощью перечисления элементов, словесного описания;
оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);
строить высказывания, отрицания высказываний.
В повседневной жизни и при изучении других предметов:
строить цепочки умозаключений на основе использования правил логики;
использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.
Числа
Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
понимать и объяснять смысл позиционной записи натурального числа;
выполнять вычисления, в том числе с использованием приемов рациональных вычислений;
выполнять округление рациональных чисел с заданной точностью;
сравнивать рациональные и иррациональные числа;
представлять рациональное число в виде десятичной дроби
упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;
находить НОД и НОК чисел и использовать их при решении задач.
В повседневной жизни и при изучении других предметов:
применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;
составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;
записывать и округлять числовые значения реальных величин с использованием разных систем измерения.
Тождественные преобразования
Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;
выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);
выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;
выделять квадрат суммы и разности одночленов;
раскладывать на множители квадратный трехчлен;
выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;
выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;
выполнять преобразования выражений, содержащих квадратные корни;
выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;
выполнять преобразования выражений, содержащих модуль.
В повседневной жизни и при изучении других предметов:
выполнять преобразования и действия с числами, записанными в стандартном виде;
выполнять преобразования алгебраических выражений при решении задач других учебных предметов.
Уравнения и неравенства
Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);
решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;
решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;
решать дробно-линейные уравнения;
решать простейшие иррациональные уравнения вида , ;
решать уравнения вида ;
решать уравнения способом разложения на множители и замены переменной;
использовать метод интервалов для решения целых и дробно-рациональных неравенств;
решать линейные уравнения и неравенства с параметрами;
решать несложные квадратные уравнения с параметром;
решать несложные системы линейных уравнений с параметрами;
решать несложные уравнения в целых числах.
В повседневной жизни и при изучении других предметов:
составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;
выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;
выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;
уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.
Функции
Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, четность/нечетность функции;
строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: , QUOTE ,, ;
на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;
составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;
исследовать функцию по ее графику;
находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;
оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
решать задачи на арифметическую и геометрическую прогрессию.
В повседневной жизни и при изучении других предметов:
иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;
использовать свойства и график квадратичной функции при решении задач из других учебных предметов.
Текстовые задачи
Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;
знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
моделировать рассуждения при поиске решения задач с помощью граф-схемы;
выделять этапы решения задачи и содержание каждого этапа;
уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
анализировать затруднения при решении задач;
выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;
решать разнообразные задачи «на части»,
решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
владеть основными методами решения задач на смеси, сплавы, концентрации;
решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
решать несложные задачи по математической статистике;
овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.
В повседневной жизни и при изучении других предметов:
выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
решать задачи на движение по реке, рассматривая разные системы отсчета.
Статистика и теория вероятностей
Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
извлекать информацию, представленную в таблицах, на диаграммах, графиках;
составлять таблицы, строить диаграммы и графики на основе данных;
оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;
применять правило произведения при решении комбинаторных задач;
оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;
представлять информацию с помощью кругов Эйлера;
решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.
В повседневной жизни и при изучении других предметов:
извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;
определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;
оценивать вероятность реальных событий и явлений.
Геометрические фигуры
Оперировать понятиями геометрических фигур;
извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;
формулировать в простейших случаях свойства и признаки фигур;
доказывать геометрические утверждения;
владеть стандартной классификацией плоских фигур (треугольников и четырехугольников).
В повседневной жизни и при изучении других предметов:
использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин.
Отношения
Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;
применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;
характеризовать взаимное расположение прямой и окружности, двух окружностей.
В повседневной жизни и при изучении других предметов:
использовать отношения для решения задач, возникающих в реальной жизни.
Измерения и вычисления
Оперировать представлениями о длине, площади, объеме как величинами. Применять теорему Пифагора, формулы площади, объема при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объема, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;
проводить простые вычисления на объемных телах;
формулировать задачи на вычисление длин, площадей и объемов и решать их.
В повседневной жизни и при изучении других предметов:
проводить вычисления на местности;
применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности.
Геометрические построения
Изображать геометрические фигуры по текстовому и символьному описанию;
свободно оперировать чертежными инструментами в несложных случаях,
выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;
изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.
В повседневной жизни и при изучении других предметов:
выполнять простейшие построения на местности, необходимые в реальной жизни;
оценивать размеры реальных объектов окружающего мира.
Преобразования
Оперировать понятием движения и преобразования подобия, владеть приемами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;
строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;
применять свойства движений для проведения простейших обоснований свойств фигур.
В повседневной жизни и при изучении других предметов:
применять свойства движений и применять подобие для построений и вычислений.
Векторы и координаты на плоскости
Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;
выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;
применять векторы и координаты для решения геометрических задач на вычисление длин, углов.
В повседневной жизни и при изучении других предметов:
использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.
История математики
Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;
понимать роль математики в развитии России.
Методы математики
Используя изученные методы, проводить доказательство, выполнять опровержение;
выбирать изученные методы и их комбинации для решения математических задач;
использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;
применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.
Выпускник получит возможность научиться в 7-9 классах для успешного продолжения образования на углубленном уровнеЭлементы теории множеств и математической логики
Свободно оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;
задавать множества разными способами;
проверять выполнение характеристического свойства множества;
свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний; истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не; условные высказывания (импликации);
строить высказывания с использованием законов алгебры высказываний.
В повседневной жизни и при изучении других предметов:
строить рассуждения на основе использования правил логики;
использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов.
Числа
Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;
переводить числа из одной системы записи (системы счисления) в другую;
доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11 суммы и произведения чисел при выполнении вычислений и решении задач;
выполнять округление рациональных и иррациональных чисел с заданной точностью;
сравнивать действительные числа разными способами;
упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;
находить НОД и НОК чисел разными способами и использовать их при решении задач;
выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.
В повседневной жизни и при изучении других предметов:
выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;
записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;
составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.
Тождественные преобразования
Свободно оперировать понятиями степени с целым и дробным показателем;
выполнять доказательство свойств степени с целыми и дробными показателями;
оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;
свободно владеть приемами преобразования целых и дробно-рациональных выражений;
выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приемов;
использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трехчлена и для решения задач, в том числе задач с параметрами на основе квадратного трехчлена;
выполнять деление многочлена на многочлен с остатком;
доказывать свойства квадратных корней и корней степени n;
выполнять преобразования выражений, содержащих квадратные корни, корни степени n;
свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;
выполнять различные преобразования выражений, содержащих модули. QUOTE
В повседневной жизни и при изучении других предметов:
выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;
выполнять преобразования рациональных выражений при решении задач других учебных предметов;
выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей.
Уравнения и неравенства
Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;
знать теорему Виета для уравнений степени выше второй;
понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;
решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;
владеть разными методами доказательства неравенств;
решать уравнения в целых числах;
изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.
В повседневной жизни и при изучении других предметов:
составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;
выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;
составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;
составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты.
Функции
Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, четность/нечетность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,
строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;
использовать преобразования графика функции для построения графиков функций ;
анализировать свойства функций и вид графика в зависимости от параметров;
свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;
использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;
исследовать последовательности, заданные рекуррентно;
решать комбинированные задачи на арифметическую и геометрическую прогрессии.
В повседневной жизни и при изучении других предметов:
конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;
использовать графики зависимостей для исследования реальных процессов и явлений;
конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета.
Статистика и теория вероятностей
Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
выбирать наиболее удобный способ представления информации, адекватный ее свойствам и целям анализа;
вычислять числовые характеристики выборки;
свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;
свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
знать примеры случайных величин, и вычислять их статистические характеристики;
использовать формулы комбинаторики при решении комбинаторных задач;
решать задачи на вычисление вероятности в том числе с использованием формул.
В повседневной жизни и при изучении других предметов:
представлять информацию о реальных процессах и явлениях способом, адекватным ее свойствам и цели исследования;
анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;
оценивать вероятность реальных событий и явлений в различных ситуациях.
Текстовые задачи
Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;
распознавать разные виды и типы задач;
использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;
различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;
знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);
моделировать рассуждения при поиске решения задач с помощью граф-схемы;
выделять этапы решения задачи и содержание каждого этапа;
уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
анализировать затруднения при решении задач;
выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;
анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;
исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;
решать разнообразные задачи «на части»;
решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;
решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
решать несложные задачи по математической статистике;
овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.
В повседневной жизни и при изучении других предметов:
конструировать новые для данной задачи задачные ситуации с учетом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
решать задачи на движение по реке, рассматривая разные системы отсчета;
конструировать задачные ситуации, приближенные к реальной действительности.
Геометрические фигуры
Свободно оперировать геометрическими понятиями при решении задач и проведении математических рассуждений;
самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новые классы фигур, проводить в несложных случаях классификацию фигур по различным основаниям;
исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;
решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;
формулировать и доказывать геометрические утверждения.
В повседневной жизни и при изучении других предметов:
составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат.
Отношения
Владеть понятием отношения как метапредметным;
свободно оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;
использовать свойства подобия и равенства фигур при решении задач.
В повседневной жизни и при изучении других предметов:
использовать отношения для построения и исследования математических моделей объектов реальной жизни.
Измерения и вычисления
Свободно оперировать понятиями длина, площадь, объем, величина угла как величинами, использовать равновеликость и равносоставленность при решении задач на вычисление, самостоятельно получать и использовать формулы для вычислений площадей и объемов фигур, свободно оперировать широким набором формул на вычисление при решении сложных задач, в том числе и задач на вычисление в комбинациях окружности и треугольника, окружности и четырехугольника, а также с применением тригонометрии;
самостоятельно формулировать гипотезы и проверять их достоверность.
В повседневной жизни и при изучении других предметов:
свободно оперировать формулами при решении задач в других учебных предметах и при проведении необходимых вычислений в реальной жизни.
Геометрические построения
Оперировать понятием набора элементов, определяющих геометрическую фигуру,
владеть набором методов построений циркулем и линейкой;
проводить анализ и реализовывать этапы решения задач на построение.
В повседневной жизни и при изучении других предметов:
выполнять построения на местности;
оценивать размеры реальных объектов окружающего мира.
Преобразования
Оперировать движениями и преобразованиями как метапредметными понятиями;
оперировать понятием движения и преобразования подобия для обоснований, свободно владеть приемами построения фигур с помощью движений и преобразования подобия, а также комбинациями движений, движений и преобразований;
использовать свойства движений и преобразований для проведения обоснования и доказательства утверждений в геометрии и других учебных предметах;
пользоваться свойствами движений и преобразований при решении задач.
В повседневной жизни и при изучении других предметов:
применять свойства движений и применять подобие для построений и вычислений.
Векторы и координаты на плоскости
Свободно оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, скалярное произведение векторов, координаты на плоскости, координаты вектора;
владеть векторным и координатным методом на плоскости для решения задач на вычисление и доказательства;
выполнять с помощью векторов и координат доказательство известных ему геометрических фактов (свойства средних линий, теорем о замечательных точках и т.п.) и получать новые свойства известных фигур;
использовать уравнения фигур для решения задач и самостоятельно составлять уравнения отдельных плоских фигур.
В повседневной жизни и при изучении других предметов:
использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.
История математики
Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;
рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России.
Методы математики
Владеть знаниями о различных методах обоснования и опровержения математических утверждений и самостоятельно применять их;
владеть навыками анализа условия задачи и определения подходящих для решения задач изученных методов или их комбинаций;
характеризовать произведения искусства с учетом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве.
Содержание основного общего образования по учебному предмету
Cодержание курсов математики 5–6 классов, алгебры и геометрии 7–9 классов объединено как в исторически сложившиеся линии (числовая, алгебраическая, геометрическая, функциональная и др.), так и в относительно новые (стохастическая линия, «реальная математика»). Отдельно представлены линия сюжетных задач, историческая линия.
Элементы теории множеств и математической логикиСогласно ФГОС основного общего образования в курс математики введен раздел «Логика», который не предполагает дополнительных часов на изучении и встраивается в различные темы курсов математики и информатики и предваряется ознакомлением с элементами теории множеств.
Множества и отношения между ними
Множество, характеристическое свойство множества, элемент множества, пустое, конечное, бесконечное множество. Подмножество. Отношение принадлежности, включения, равенства. Элементы множества, способы задания множеств, распознавание подмножеств и элементов подмножеств с использованием кругов Эйлера.
Операции над множествами
Пересечение и объединение множеств. Разность множеств, дополнение множества. Интерпретация операций над множествами с помощью кругов Эйлера.
Элементы логики
Определение. Утверждения. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.
Высказывания
Истинность и ложность высказывания. Сложные и простые высказывания. Операции над высказываниями с использованием логических связок: и, или, не. Условные высказывания (импликации).
Содержание курса математики в 5–6 классахНатуральные числа и нуль
Натуральный ряд чисел и его свойства
Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.
Запись и чтение натуральных чисел
Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.
Округление натуральных чисел
Необходимость округления. Правило округления натуральных чисел.
Сравнение натуральных чисел, сравнение с числом 0
Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулем, математическая запись сравнений, способы сравнения чисел.
Действия с натуральными числами
Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.
Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.
Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.
Степень с натуральным показателем
Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.
Числовые выражения
Числовое выражение и его значение, порядок выполнения действий.
Деление с остатком
Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.
Свойства и признаки делимости
Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.
Разложение числа на простые множители
Простые и составные числа, решето Эратосфена.
Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.
Алгебраические выражения
Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.
Делители и кратные
Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.
Дроби
Обыкновенные дроби
Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).
Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.
Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.
Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.
Арифметические действия со смешанными дробями.
Арифметические действия с дробными числами.
Способы рационализации вычислений и их применение при выполнении действий.
Десятичные дроби
Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.
Отношение двух чисел
Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.
Среднее арифметическое чисел
Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.
Проценты
Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.
Диаграммы
Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.
Рациональные числа
Положительные и отрицательные числа
Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.
Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.
Решение текстовых задач
Единицы измерений: длины, площади, объема, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.
Задачи на все арифметические действия
Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.
Задачи на движение, работу и покупки
Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.
Задачи на части, доли, проценты
Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.
Логические задачи
Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.
Основные методы решения текстовых задач: арифметический, перебор вариантов.
Наглядная геометрия
Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.
Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.
Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.
Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.
Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.
Решение практических задач с применением простейших свойств фигур.
История математики
Появление цифр, букв, иероглифов в процессе счета и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.
Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.
Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена.
Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему ?
Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.
Содержание курса математики в 7–9 классахАлгебраЧисла
Рациональные числа
Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.
Иррациональные числа
Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа . Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.
Тождественные преобразования
Числовые и буквенные выражения
Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.
Целые выражения
Степень с натуральным показателем и ее свойства. Преобразования выражений, содержащих степени с натуральным показателем.
Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращенного умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Квадратный трехчлен, разложение квадратного трехчлена на множители.
Дробно-рациональные выражения
Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.
Преобразование выражений, содержащих знак модуля.
Квадратные корни
Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.
Уравнения и неравенства
Равенства
Числовое равенство. Свойства числовых равенств. Равенство с переменной.
Уравнения
Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).
Линейное уравнение и его корни
Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.
Квадратное уравнение и его корни
Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений:использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.
Дробно-рациональные уравнения
Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.
Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.
Простейшие иррациональные уравнения вида , .
Уравнения вида .Уравнения в целых числах.
Системы уравнений
Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.
Понятие системы уравнений. Решение системы уравнений.
Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.
Системы линейных уравнений с параметром.
Неравенства
Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.
Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).
Решение линейных неравенств.
Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.
Решение целых и дробно-рациональных неравенств методом интервалов.
Системы неравенств
Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.
Функции
Понятие функции
Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, четность/нечетность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по ее графику.
Представление об асимптотах.
Непрерывность функции. Кусочно заданные функции.
Линейная функция
Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от ее углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.
Квадратичная функция
Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.
Обратная пропорциональность
Свойства функции QUOTE . Гипербола.
Графики функций. Преобразование графика функции для построения графиков функций вида .
Графики функций , QUOTE ,, .
Последовательности и прогрессии
Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и ее свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.
Решение текстовых задач
Задачи на все арифметические действия
Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.
Задачи на движение, работу и покупки
Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.
Задачи на части, доли, проценты
Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.
Логические задачи
Решение логических задач. Решение логических задач с помощью графов, таблиц.
Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).
Статистика и теория вероятностейСтатистика
Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.
Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.
Случайные события
Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.
Элементы комбинаторики
Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.
Случайные величины
Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.
ГеометрияГеометрические фигуры
Фигуры в геометрии и в окружающем мире
Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура».
Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и ее свойства, виды углов, многоугольники, круг.
Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.
Многоугольники
Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.
Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.
Четырехугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата.
Окружность, круг
Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырехугольников, правильных многоугольников.
Геометрические фигуры в пространстве (объемные тела)
Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.
Отношения
Равенство фигур
Свойства равных треугольников. Признаки равенства треугольников.
Параллельность прямых
Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.
Перпендикулярные прямые
Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.
Подобие
Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.
Взаимное расположение прямой и окружности, двух окружностей.
Измерения и вычисления
Величины
Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.
Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади.
Представление об объеме и его свойствах. Измерение объема. Единицы измерения объемов.
Измерения и вычисления
Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины окружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.
Расстояния
Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.
Геометрические построения
Геометрические построения для иллюстрации свойств геометрических фигур.
Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,
Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.
Деление отрезка в данном отношении.
Геометрические преобразования
Преобразования
Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.
Движения
Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.
Векторы и координаты на плоскости
Векторы
Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.
Координаты
Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.
Применение векторов и координат для решения простейших геометрических задач.
История математикиВозникновение математики как науки, этапы ее развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.
Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырех. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа.
Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.
От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.
Геометрия и искусство. Геометрические закономерности окружающего мира.
Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.
Роль российских ученых в развитии математики: Л. Эйлер. Н.И. Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров.
Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н. Крылов. Космическая программа и М.В. Келдыш.
Оценка планируемых результатов.
Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.
Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.
Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.
Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.
Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.
Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.
Особенности оценки предметных результатов
Оценка предметных результатов представляет собой оценку достижения обучающимся планируемых результатов по отдельным предметам.
Формирование этих результатов обеспечивается за счёт основных компонентов образовательного процесса — учебных предметов.
Основным объектом оценки предметных результатов в соответствии с требованиями Стандарта является способность к решению учебно-познавательных и учебно-практических задач, основанных на изучаемом учебном материале, с использованием способов действий, релевантных содержанию учебных предметов, в том числе метапредметных (познавательных, регулятивных, коммуникативных) действий.
Система оценки предметных результатов освоения учебных программ с учётом уровневого подхода, принятого в Стандарте, предполагает выделение базового уровня достижений как точки отсчёта при построении всей системы оценки и организации индивидуальной работы с обучающимися.
Реальные достижения обучающихся могут соответствовать базовому уровню, а могут отличаться от него как в сторону превышения, так и в сторону недостижения.
Практика показывает, что для описания достижений обучающихся целесообразно установить следующие пять уровней.
Базовый уровень достижений — уровень, который демонстрирует освоение учебных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следующей ступени образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (или отметка «3», отметка «зачтено»).
Превышение базового уровня свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о кругозоре, широте (или избирательности) интересов. Целесообразно выделить следующие два уровня, превышающие базовый:
• повышенный уровень достижения планируемых результатов, оценка «хорошо» (отметка «4»);
• высокий уровень достижения планируемых результатов, оценка «отлично» (отметка «5»).
Повышенный и высокий уровни достижения отличаются по полноте освоения планируемых результатов, уровню овладения учебными действиями и сформированностью интересов к данной предметной области.
Индивидуальные траектории обучения обучающихся, демонстрирующих повышенный и высокий уровни достижений, целесообразно формировать с учётом интересов этих обучающихся и их планов на будущее. При наличии устойчивых интересов к учебному предмету и основательной подготовки по нему такие обучающиеся могут быть вовлечены в проектную деятельность по предмету и сориентированы на продолжение обучения в старших классах по данному профилю.
Для описания подготовки учащихся, уровень достижений которых ниже базового, целесообразно выделить также два уровня:
• пониженный уровень достижений, оценка «неудовлетворительно» (отметка «2»);
• низкий уровень достижений, оценка «плохо» (отметка «1»).
Недостижение базового уровня (пониженный и низкий уровни достижений) фиксируется в зависимости от объёма и уровня освоенного и неосвоенного содержания предмета.
Как правило, пониженный уровень достижений свидетельствует об отсутствии систематической базовой подготовки, о том, что обучающимся не освоено даже и половины планируемых результатов, которые осваивает большинство обучающихся, о том, что имеются значительные пробелы в знаниях, дальнейшее обучение затруднено. При этом обучающийся может выполнять отдельные задания повышенного уровня. Данная группа обучающихся (в среднем в ходе обучения составляющая около 10%) требует специальной диагностики затруднений в обучении, пробелов в системе знаний и оказании целенаправленной помощи в достижении базового уровня.
Низкий уровень освоения планируемых результатов свидетельствует о наличии только отдельных фрагментарных знаний по предмету, дальнейшее обучение практически невозможно. Обучающимся, которые демонстрируют низкий уровень достижений, требуется специальная помощь не только по учебному предмету, но и по формированию мотивации к обучению, развитию интереса к изучаемой предметной области, пониманию значимости предмета для жизни и др. Только наличие положительной мотивации может стать основой ликвидации пробелов в обучении для данной группы обучающихся.
Описанный выше подход целесообразно применять в ходе различных процедур оценивания: текущего, промежуточного и итогового.
Для формирования норм оценки в соответствии с выделенными уровнями необходимо описать достижения обучающегося базового уровня (в терминах знаний и умений, которые он должен продемонстрировать), за которые обучающийся обоснованно получает оценку «удовлетворительно». После этого определяются и содержательно описываются более высокие или низкие уровни достижений. Важно акцентировать внимание не на ошибках, которые сделал обучающийся, а на учебных достижениях, которые обеспечивают продвижение вперёд в освоении содержания образования.
Для оценки динамики формирования предметных результатов в системе внутришкольного мониторинга образовательных достижений целесообразно фиксировать и анализировать данные о сформированности умений и навыков, способствующих освоению систематических знаний, в том числе:
• первичному ознакомлению, отработке и осознанию теоретических моделей и понятий (общенаучных и базовых для данной области знания), стандартных алгоритмов и процедур;
• выявлению и осознанию сущности и особенностей изучаемых объектов, процессов и явлений действительности (природных, социальных, культурных, технических и др.) в соответствии с содержанием конкретного учебного предмета, созданию и использованию моделей изучаемых объектов и процессов, схем;
• выявлению и анализу существенных и устойчивых связей и отношений между объектами и процессами.
При этом обязательными составляющими системы накопленной оценки являются материалы:
• стартовой диагностики;
• тематических и итоговых проверочных работ по всем учебным предметам;
• творческих работ, включая учебные исследования и учебные проекты.
Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения заданий базового уровня. В период введения Стандарта критерий достижения/освоения учебного материала задаётся как выполнение не менее 50% заданий базового уровня или получение 50% от максимального балла за выполнение заданий базового уровня.
Уровни подготовки учащихся и критерии успешности обучения по
математике
Уровни Оценка Теория Практика
1
Узнавание
Алгоритмическая деятельность с подсказкой
«3» Распознавать объект, находить нужную формулу, признак, свойство и т.д. Уметь выполнять задания по образцу, на непосредственное применение формул, правил, инструкций и т.д.
2
Воспроизведение
Алгоритмическая деятельность без подсказки
«4» Знать формулировки всех понятий, их свойства, признаки, формулы.
Уметь воспроизвести доказательства, выводы, устанавливать взаимосвязь, выбирать нужное для выполнения данного задания Уметь работать с учебной и справочной литературой, выполнять задания, требующие несложных преобразований с применением изучаемого материала
3
Понимание
Деятельность при отсутствии явно выраженного алгоритма
«5» Делать логические заключения, составлять алгоритм, модель несложных ситуаций Уметь применять полученные знания в различных ситуациях. Выполнять задания комбинированного характера, содержащих несколько понятий.
4
Овладение умственной самостоятельностью
Творческая исследовательская деятельность
«5» В совершенстве знать изученный материал, свободно ориентироваться в нем. Иметь знания из дополнительных источников. Владеть операциями логического мышления. Составлять модель любой ситуации. Уметь применять знания в любой нестандартной ситуации. Самостоятельно выполнять творческие исследовательские задания. Выполнять функции консультанта.
Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.
Оценка письменных контрольных работ обучающихся по математике.
Отметка «5», если:
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Отметка «1» ставится, если:
работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно, без наводящих вопросов учителя;
возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.
Общая классификация ошибок.
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
Грубыми считаются ошибки:
незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
незнание наименований единиц измерения;
неумение выделить в ответе главное;
неумение применять знания, алгоритмы для решения задач;
неумение делать выводы и обобщения;
неумение читать и строить графики;
неумение пользоваться первоисточниками, учебником и справочниками;
потеря корня или сохранение постороннего корня;
отбрасывание без объяснений одного из них;
равнозначные им ошибки;
вычислительные ошибки, если они не являются опиской;
логические ошибки.
К негрубым ошибкам следует отнести:
неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
неточность графика;
нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
нерациональные методы работы со справочной и другой литературой;
неумение решать задачи, выполнять задания в общем виде.
Недочетами являются:
нерациональные приемы вычислений и преобразований;
небрежное выполнение записей, чертежей, схем, графиков.
Контроль ЗУН предлагается при проведении математических диктантов, практических работ, самостоятельных работ обучающего и контролирующего вида, контрольных работ.