Примеры применения производной к исследованию функции. (10 класс )
Урок "Примеры применения производной к исследованию функции". 10-й класс
Учитель: Зайцева Галина Геннадиевна
Цели:
Образовательные: Закрепить знания нахождения промежутков возрастания и убывания функции, экстремумов функции с помощью производной.
Развивающие: развивать навыки исследования функций и построения графиков.
Воспитательные: Проверить степень усвоения знаний и умений в ходе написания теста.
Подготовка учащихся к ЕГЭ.
Задачи урока:
Обобщить и систематизировать ЗУН учащихся по теме «Примеры применения производной к исследованию функции».
Развивать навыки самоконтроля и самооценки.
Развивать внимание, логическое мышление, математическую речь.
Оборудование: интерактивная доска, учебник, тетрадь, письменные принадлежности, тесты, компьютер, проектор, презентация Microsoft Power Point, раздаточный материал.
Тип урока: обобщение и закрепление изученного материала.
Ход урока
I. Орг.момент. Постановка цели урока.
Постановка темы и задач урока. СЛАЙДЫ 1-2.
– Ребята, сегодня мы повторим тему «Примеры применения производной к исследованию функции». А так как у нас урок повторения знаний, а цель каждого такого урока – это подготовка к ЕГЭ. И сегодня мы с вами посмотрим, как данная тема отражена в КИМах ЕГЭ. Поэтому девиз нашего урока «Готовимся к ЕГЭ».
II. Проверка домашнего задания.
– Давайте посмотрим, как вы справились с решением домашнего задания. На Слайде показана таблица и график функции из № 300(б). Посмотрите и сравните с тем, что получилось у вас.
Далее проверить решение и ответ уравнений из № 137(а), № 142(а).
СЛАЙДЫ 3-4
III. Активизация знаний. Устная работа.
– Для того, чтобы мы могли повторить полное исследование функции, давайте немного поработаем устно.
СЛАЙДЫ 5-7.
Графики следующих заданий после устного перечисления свойств, учащиеся строят в тетрадях.
IV. Закрепление изученного материала. (Слайд 8)
Схема исследования функции:
-Область определения функции.
-Область значений функции.
-Четная или нечетная. Является ли периодической?
-Точки пересечения графика с осями координат.
-Промежутки знакопостоянства.
-Промежутки возрастания и убывания функции.
-Точки экстремума, экстремум функции.
-Дополнительные точки (особые).
-Составление таблицы.
-Построение графика функции.
V. Фронтальная работа. Решение задач.
Решение из учебника № 300(г) (Слайд 9)
VI. Физкультминутка.
Гимнастика для глаз.
VII. Подготовка к ЕГЭ.
– Поработаем устно, вспомним тему «Тригонометрические выражения».
Закрепим знания по темам «Касательная к графику функции» и «Экстремумы функции».
СЛАЙДЫ 10-12.
VIII. Тест.
Проверить степень усвоения знаний и умений в ходе написания теста.
Тест в двух вариантах. На листочках записываются только верные ответы, все решения делаются учениками в тетрадях.
После того как, все ответы учащихся собраны, на доске высвечиваются верные ответы и критерии оценивания. Учащиеся сами могут предварительно оценить себя.
СЛАЙД 13.
IX. Домашнее задание.
СЛАЙД 14.
Домашнее задание: стр.171 № 10 (2б, 2в); № 8 (3б).
X. Подведение итогов. Оценка ответов учащихся.
XI. Рефлексия.
СЛАЙД 15.
15