Исследование на тему «Этапы становления методики математического развития дошкольников»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ В.И.ВЕРНАДСКОГО " ГУМАНИТАРНО-ПЕДАГОГИЧЕСКАЯ АКАДЕМИЯ (ФИЛИАЛ) в г. Ялте
Кафедра педагогического мастерства учителей начальных классов и воспитателей дошкольных учреждений









Контрольная работа
по дисциплине: «Теория и технологии развития математических представлений»
На тему: «Этапы становления методики математического развития дошкольников»

Выполнил: Буркова Н.Б.
Студент 31зДО группы
Специальность 44.03.01
Дошкольное образование
Проверил: Анисимова Л.С
Кандидат педагогических наук
Оценка ____________________






Ялта, 2017
ПЛАН
Введение..3
Этапы становления методики математического развития дошкольников4
Заключение.12
Список использованной литературы13























Введение
Огромную роль в умственном воспитании и в развитии интеллекта ребёнка играет математическое развитие. Математика обладает уникальным развивающим эффектом. Ее изучение способствует развитию памяти, речи, воображения, эмоций; формирует настойчивость, терпение, творческий потенциал личности. Математика - один из наиболее трудных учебных предметов. Потенциал педагога дошкольного учреждения состоит не в передаче тех или иных математических знаний и навыков, а в приобщении детей к материалу, дающему пищу воображению, затрагивающему не только чисто интеллектуальную, но и эмоциональную сферу ребёнка. Педагог дошкольного учреждения должен дать ребёнку почувствовать, что он сможет понять, усвоить не только частные понятия, но и общие закономерности. А главное познать радость при преодолении трудностей.
Одними из самых сложных знаний, умений и навыков, включенных в содержание общественного опыта, которым овладевают подрастающие поколения, являются математические. Они носят отвлеченный характер, оперирование ими требует выполнения системы сложных умственных действий. В повседневной жизни, в быту и в играх ребенок достаточно рано начинает встречаться с такими ситуациями, которые требуют применения, хотя и элементарного, но все же математического решения (приготовить угощение для друзей, накрыть стол для кукол, разделить конфеты поровну и т. д.), знания таких отношений, как много, мало, больше, меньше, поровну, умения определить количество предметов в множестве, выбрать соответствующее количество элементов из множества и т. д. Сначала с помощью взрослых, а затем самостоятельно дети разрешают возникающие проблемы. Таким образом, уже в дошкольном возрасте дети знакомятся с математическим содержанием и овладевают элементарными вычислительными умениями, а формирование у них элементарных математических представлений является одним из важных направлений работы дошкольных учреждений.
Современные психолого-педагогические исследования доказывают, что усвоение дошкольниками системы математических представлений оказывает качественное влияние на весь ход их психического развития, обеспечивает готовность к обучению в школе (Г.А. Корнеева, А.М. Леушина, 3.А. Михайлова, Н.И. Непомнящая, Р.Л. Непомнящая, Ф. Пали, Ж. Пали, Т.Д. Рихтерман, Е.В. Сербина, Е.В. Соловьева, А.А. Столяр, Т.В. Тарунтаева, Е.В. Щербакова и др.).
При отсутствии специально организованного обучения математическое развитие в дошкольном возрасте проходит медленно и не достигает того уровня, который требуется для обеспечения дальнейшего развития познавательной деятельности ребенка, для успешного обучения в школе.
Содержание математических представлений, формируемых у детей дошкольного возраста, очень разнообразно. Особое место в нем занимают количественные представления.
Этапы становления методики математического развития дошкольников.
Вопросы математического развития детей дошкольного возраста своими корнями уходят в классическую и народную педагогику. Различные считалки, пословицы, поговорки, загадки, потешки были хорошим материалом в обучении детей счету, позволяли сформировать у ребенка понятия о числах, форме, величине, пространстве.
В ходе их освоения дети не только овладевали пересчетом предметов, но и умением воспринимать и осознавать изменения, происходящие в окружающей их действительности: природные, цветовые, пространственные и временные; количественные, изменения по форме, размеру, расположению, пропорциям. Это обеспечивало естественное развитие у детей некоторых представлений, смекалки и сообразительности.
В XIII-XIX вв. вопросы содержания и методов обучения математике детей дошкольного возраста и формирования у них представлений о размере, измерении, о времени и пространстве можно найти в педагогических трудах Я.А. Коменского, М.Г. Песталоцци, К.Д. Ушинского, Л.Н. Толстого и других.
Взгляды педагогов XIII-XIX вв. на содержание и методы развития у детей математических представлений – это первый этап развития методики - эмпирический.
Педагоги той эпохи под влиянием требований развивающейся практики пришли к выводу о необходимости подготовки детей к усвоению математики в школе. Ими высказывались определенные предложения о содержании и методах обучения детей, в основном в условиях семьи. Надо сказать, что специальных пособий по подготовке детей к школе они не разрабатывали, а основные свои идеи включали в книги по воспитанию и обучению.
Так, мыслитель-гуманист и педагог Я.А. Коменский (1592-1670) в книге «Материнская школа» (1632) рекомендует еще до школы обучать ребенка счету в пределах двадцати, умению различать числа больше-меньшие, четные-нечетные, сравнивать предметы по величине, узнавать и называть некоторые геометрические фигуры, пользоваться в практической деятельности единицами измерения: дюйм, пядь, шаг, фунт и др.
И.Г. Песталоцци (1746-1827), швейцарский педагог-демократ, указывал на недостатки существующих в то время методов обучения, в основе которых лежит зубрежка, и рекомендовал учить детей счету конкретных предметов, пониманию действий над числами, умению определять время. Предложенные им методы обучения предполагали переход от простых элементов к более сложным, широкое использование наглядности, облегчающей усвоение детьми чисел. Идеи И.Г. Песталоцци послужили в дальнейшем (середина XIX в.) основой реформы в области обучения математике в школе.
Передовые идеи в обучении детей арифметике до школы высказывал русский педагог-демократ, основоположник научной педагогики в России К.Д. Ушинский (1824-1871). Он считал важным научить ребенка считать отдельные предметы и их группы, выполнять действия сложения и вычитания, формировать понятие о десятке как единице счета. Однако все это было лишь пожеланиями, не имеющими никакого научного обоснования.
Писатель и педагог Л.Н. Толстой издал в 1872 году «Азбуку», одна из частей которой называлась «Счет». Критикуя существующие методы обучения, Л.Н. Толстой предлагал учить детей счету «вперед» и «назад» в пределах сотни и нумерации, основываясь при этом на детском практическом опыте, приобретенном в игре.
Методы развития у детей представлений о числе и форме нашли свое отражение и дальнейшее развитие в системах сенсорного воспитания немецкого педагога Ф. Фребеля (1782-1852), итальянского педагога Марии Монтессори (1870-1952) и др.
В классических системах сенсорного обучения Ф. Фребеля и М. Монтессори представлена методика ознакомления детей с геометрическими фигурами, величинами, измерением и счетом, составлением рядов предметов по размеру, весу и т. д.
Ф. Фребель видел задачи обучения счету в усвоении детьми дошкольного возраста ряда чисел. Им созданы знаменитые «Дары» - специальное пособие для развития конструктивных навыков в единстве с познанием чисел, форм, размеров, пространственных отношений. Ф. Фребель был убежден в том, что развитие в дошкольном возрасте «пространственного» воображения и мышления создает условия для перехода к усвоению геометрии в школе. Созданные Ф. Фребелем «дары» и в настоящее время используются в качестве дидактического материала для ознакомления детей с числом, формой, величиной и пространственными отношениями.
М. Монтессори, опираясь на идеи саморазвития и самообучения, признавала необходимым создание специальной среды для освоения чисел, форм, величин, а также письменной и устной нумерации. Она предлагала использовать для этого специальный материал: счетные ящики, связки цветных бус, нанизанных десятками, счеты, монеты и многое другое.
Наиболее результативно педагогическая деятельность М. Монтессори протекала в первой половине XX в. Использование в обучении и воспитании ребенка материалов по развитию у детей математических представлении строилось на определенном стиле взаимодействия взрослого с ребенком; необходимости наблюдения за поведением детей в условии специально созданной среды; организации совместной с ребенком свободной работы и др. Система М. Монтессори предусматривает развитие у ребенка сенсомоторной сферы и в дальнейшем - интеллекта. Особо выделяемый по своей значимости «золотой» математический материал сначала осваивается ребенком как набор бус в разной количественности, затем - в символах (цифрах), после этого - как средство освоения умений сравнивать числа. Таким образом, десятичная система счисления представляется ребенку зримо и осязаемо, что ведет к успешному овладению арифметикой.
Обширно представлен в системе М. Монтессори раздел «Логика и счет»: изучение фигур, размеров, способов измерения, проекции, моделирования множеств.
В целом обучение математике по системе М. Монтессори начиналось с сенсорного впечатления, затем осуществлялся переход к пониманию символа (т.е. от конкретного - к абстрактному), что делало математику привлекательной и доступной даже для 3-4-летних детей.
Итак, передовые педагоги прошлого, русские и зарубежные, признавали роль и необходимость первичных математических знаний в развитии и воспитании детей до школы, выделяли при этом счет в качестве средства умственного развития и настоятельно рекомендовали обучать детей ему как можно раньше, примерно с трех лет. Обучение понималось ими как «упражняемость» в выполнении практических, игровых действий с применением наглядного материала, использование накопленного детьми опыта в различении чисел, времени, пространства, мер в разнообразных детских деятельностях.
Особое значение вопросы методики математического развития приобретают в педагогической литературе начальной школы на рубеже XIX-XX ст. Авторами методических рекомендаций тогда были передовые учителя и методисты. Опыт практических работников не всегда был научно обоснованным, зато был проверен на практике. Со временем он усовершенствовался, сильнее и полнее в нем выявилась прогрессивная педагогическая мысль.
В конце XIX - в начале XX столетия у методистов возникла потребность в разработке научного фундамента методики арифметики. Значительный вклад в разработку методики сделали передовые русские учителя и методисты П.С. Гурьев, А.И. Гольденберг, Д.Ф. Егоров, В.А. Евтушевский, Д.Д. Галанин и другие.
Становление методики развития элементарных математических представлений в XIX - начале XX вв. происходило также под непосредственным воздействием идей реформирования школьных методов обучения арифметике. Особо выделились два направления: с одним из них связан так называемый метод изучения чисел, или монографический метод, а с другим - метод изучения действий, который назвали вычислительным.
Согласно методу изучения чисел, в разработке немецкого методиста А.В. Грубе преподавание арифметики осуществлялось «от числа к числу». Каждое из чисел, якобы доступное «непосредственному созерцанию», сравнивалось с каждым из предыдущих чисел путем установления между ними разностного и кратного отношения. Действия как бы сами вытекали из знания наизусть состава чисел.
Монографический метод получил определение метода, описывающего число.
В процессе изучения каждого числа материалом для счета служили пальцы рук, штрихи на доске или в тетради, палочки. Например, при изучении числа 6 предлагалось разложить палочки по одной. Задавались вопросы: «Из какого количества палочек составилось число?», «Отсчитайте по одной палочке, чтобы получилось шесть и т.д. После каждой группы таких упражнений действия записывались в виде таблицы, результаты которой заучивались наизусть, с тем чтобы в дальнейшем производить арифметические действия по памяти, не прибегая к вычислениям.
В 70-х гг. XIX в. стали появляться противники монографического метода. Недовольство методом нарастало, и в 80-90-х гг. русские математики выступили с его резкой критикой, противопоставляя ему метод изучения действий, или, иначе, вычислительный метод.
Метод изучения действий (вычислительный) - предполагал обучение детей вычислениям и пониманию смысла арифметических действий. Обучение при этом строилось по десятичным концентрам. В пределах каждого концентра изучались не отдельные числа, а счет и действия с числами.
Оба метода (и монографический, и вычислительный) сыграли положительную роль в дальнейшем развитии методики, которая вобрала в себя приемы, упражнения, дидактические средства одного и другого методов.
В конце ХIХ - начале XX вв. были широко распространены идеи обучения математике без принуждения и дидактичности, забавно, но без излишней занимательности. Математики, психологи, педагоги разрабатывали математические игры и развлечения, составляли сборники задач на смекалку, преобразование фигур, решение головоломок (В.А. Латышев, Н.Н. Аменицкий, И.П. Сахаров, А.П. Доморяд, В.Арене и др.).
Авторы стремились придать четкую логику построения, необычность задачам-шуткам, арифметическим ребусам, задачам-головоломкам, задачам на деление целого на части и т. д. В ходе решения таких задач развиваются способность к правильному мышлению, логичность и последовательность мысли, острый ум и смекалка. Задачи на сообразительность, сметливость учат детей применять имеющиеся у них знания к различным случаям жизни, приучают к самоконтролю, а главное - способствуют выработке у детей умений самостоятельно искать путь решения.
Ряд книг был издан специально с целью развития способностей детей, в частности «Забавная арифметика» Н.Н. Аменицкого и И.П. Сахарова. В ней предлагалось живое и забавное решение различных практических задач и вопросов, что стимулировало проявления детской самодеятельности.
Широко применялись в обучении и развитии детей математические игры, в ходе которых был необходим подробный и четкий анализ игровых действий, возможность проявить смекалку в ходе поисков, самостоятельность. Значение математических игр рассматривалось авторами с позиций развития у детей интереса к изучению математики, становления умственных способностей, смекалки и сообразительности, находчивости, волевых черт характера, а также приучения детей к умственному труду.
Современное состояние теории и технологии развития математических представлений у детей дошкольного возраста сложилось в 80-90-е гг. XX вв. и первые годы нового столетия под влиянием развития идей обучения детей математике, а также реорганизации всей системы образования.
Уже в 80-е гг. начали обсуждаться пути совершенствования как содержания, так и методов обучения детей дошкольного возраста математике.
В качестве негативного момента отмечалась ориентировка на выработку у детей предметных действий, в основном связанных со счетом и простейшими вычислениями, без должного уровня их обобщенности. Такой подход не обеспечивал подготовку к усвоению математических понятий в дальнейшем обучении.
Специалисты выясняли возможности интенсификации и оптимизации обучения, способствующие общему и математическому развитию ребенка, отмечали необходимость повышения теоретического уровня осваиваемых детьми знаний. Это требовало реконструкции программы обучения, в том числе переосмысления системы представлений, последовательности их формирования.
Начались интенсивные поиски путей обогащения содержания обучения. Решение этих сложных проблем осуществлялось по-разному. Психологи в качестве основания для формирования начальных математических представлений и понятий предлагали различные предметные действия.
П.Я. Гальперин разработал линию формирования начальных математических понятий и действий, построенную на введении мерки и определении единицы через отношение к мерке. Число при таком подходе воспринимается ребенком как результат измерения, как отношение измеряемой величины к избранной мерке. На основе этих и других исследований в программу обучения детей была включена тема «Освоение величин».
В исследовании В.В. Давыдова был раскрыт психологический механизм счета как умственной деятельности и намечены пути формирования понятия числа через освоение детьми действий уравнивания, комплектования и измерения. Генезис понятия числа рассматривался на основе кратного отношения любой величины (непрерывной и дискретной) к ее части.
В отличие от традиционной методики ознакомления с числом (число - результат счета) новым явился способ введения самого понятия: число как отношение измеряемой величины к единице измерения (условная мерка), т. е. число - результат измерения.
Анализ содержания обучения дошкольников с точки зрения новых задач привел исследователей к выводу о необходимости учить детей обобщенным способам решения познавательных задач, усвоению связей, зависимостей, отношений и логических операций (классификации и сериации).
Для этого предлагались и своеобразные средства: модели, схематические рисунки и изображения, отражающие наиболее существенное в познаваемом содержании.
Математики-методисты (А. И. Маркушевич, Ж. Папи и др.) настаивали на значительном пересмотре содержания знаний для детей 6-летнего возраста, насыщении его некоторыми новыми представлениями, относящимися к множествам, комбинаторике, графам, вероятности и т. д.
Идеи простейшей предлогической подготовки дошкольников разрабатывались в Могилевском педагогическом институте под руководством А.А. Столяра. Методика введения детей в мир логико-математических представлений - свойства, отношения, множества, операции над множествами, логические операции(отрицание, конъюнкция, дизъюнкция) - осуществлялась с помощью специальной серии обучающих игр.
В педагогических исследованиях выяснялись возможности развития у детей представлений о величине, установления взаимосвязей между счетом и измерением; апробировались приемы обучения (Р.Л. Березина, Н.Г. Белоус, 3.Е. Лебедева, Р.Л. Непомнящая, Е.В. Проскура, Л.А. Левинова, Т.В. Тарунтаева, Е.И. Щербакова).
Возможности формирования количественных представлений у детей раннего возраста и пути их совершенствования у детей дошкольного возраста изучены В.В.Даниловой, Л.И.Ермолаевой, Е.А. Тархановой.
Содержание и приемы освоения пространственно-временных отношений определены на основе исследований Т.А. Мусейибовой, К.В. Назаренко, Т.Д. Рихтерман и др.
Методы и приемы математического развития детей с помощью игры были разработаны З.А.Грачевой (Михайловой), Т.Н. Игнатовой, А.А. Смоленцевой, И.И. Щербининой и др.
Исследовались возможности использования наглядного моделирования в процессе обучения решению арифметических задач (Н.И. Непомнящая), познания детьми количественных и функциональных зависимостей (Л.Н. Бондаренко, Р.Л. Непомнящая, А.И. Кириллова), способности дошкольников к наглядному моделированию при освоении пространственных отношений (Р.И. Говорова, О.М. Дьяченко, Т.В. Лаврентьева, Л.М. Хализева).
Комплексный подход в обучении, эффективные дидактические средства, обогащенное содержание и разнообразные приемы обучения нашли отражение в конспектах занятий по формированию математических представлений и методических рекомендациях по их использованию, разработанных Л. С. Метлиной.
Поиск путей совершенствования методики обучения математике детей дошкольного возраста осуществлялся и в других странах.
В начале 90-х гг. XX в. Наметилось несколько основных научных направлений в теории и методике развития математических представлений у детей дошкольного возраста.
Согласно первому направлению, содержание обучения и развития, методы и приемы конструировались на основе идеи преимущественного развития у детей дошкольного возраста интеллектуально-творческих способностей (Ж. Пиаже, Д. Б. Эльконин, В. В. Давыдов, Н. Н. Поддьяков, А. А. Столяр и др.):
- наблюдательность, познавательные интересы;
- исследовательский подход к явлениям и объектам окружения (умения устанавливать связи, выявлять зависимости, делать выводы);
- умение сравнивать, классифицировать, обобщать;
- прогнозирование изменений в деятельности и результатах;
- ясное и точное выражение мысли;
- осуществление действия в виде «умственного эксперимента» (В.В. Давыдов и др.).
Предполагались активные методы и приемы обучения и развития детей, такие как моделирование, действия трансформации(перемещение, удаление и возвращение, комбинирование), игра и другие.
Способность к наглядному моделированию выступает как одна из общих интеллектуальных способностей. Дети овладевают действиями с тремя видами моделей (модельных представлений): конкретными; обобщенными, отражающими общую структуру класса объектов; условно-символическими, передающими скрытые от непосредственного восприятия связи и отношения.
Второе положение базировалось на преимущественном развитии у детей сенсорных процессов и способностей (А.В. Запорожец, Л.А. Венгер, Н.Б. Венгер и др.):
- включение ребенка в активный процесс по выделению свойств объектов путем обследования, сравнения, результативного практического действия;
- самостоятельное и осознанное использование сенсорных эталонов и эталонов мер в деятельности использование моделирования («прочтения» моделей и действий моделирования).
При этом овладение перцептивными ориентировочными действиями, которые ведут к усвоению сенсорных эталонов, рассматривается как основа развития у детей сенсорных способностей.
Третье теоретическое положение, на котором базируется математическое развитие детей дошкольного возраста, основано на идеях первоначального (до освоения чисел) овладения детьми способами практического сравнения величин через выделение в предметах общих признаков - массы, длины, ширины, высоты (П.Я. Гальперин, Л.С.Георгиев, В.В.Давыдов, Г.А. Корнеева, А.М. Леушина и др.). Эта деятельность обеспечивает освоение отношений равенства и неравенства путем сопоставления. Дети овладевают практическими способами выявления отношений по величине, для которых числа не требуются. Числа осваиваются вслед за упражнениями при сравнении величин путем измерения.
Четвертое теоретическое положение основывается на идее становления и развития определенного стиля мышления в процессе освоения детьми свойств и отношений (А.А. Столяр, Р.Ф. Соболевский, Т.М. Чеботаревская, Е.А. Носова и др.).
Умственные действия со свойствами и отношениями рассматриваются как доступное и эффективное средство развития интеллектуально-творческих способностей. В процессе действий с множествами предметов, обладающих разнообразными свойствами (цветом, формой, размером, толщиной и пр.), дети упражняются в абстрагировании свойств и выполнении логических операций над свойствами тех или иных подмножеств. Специально сконструированные игры помогают детям понять точный смысл логических связок и, или, если, то, смысл слов не, все, некоторые.
Теоретические основы современной методики развития математических представлений базируются на интеграции четырех основных положений, а также на классических и современных идеях математического развития детей дошкольного возраста.

















Заключение
В дошкольном возрасте закладываются основы знаний, необходимых ребенку в школе. Математика представляет собой сложную науку, которая может вызвать определенные трудности во время школьного обучения. К тому же далеко не все дети имеют склонности и обладают математическим складом ума, поэтому при подготовке к школе важно познакомить ребенка с основами счета. Математическое развитие ребенка дошкольного и младшего школьного возраста будет эффективным в том случае, когда оно представляет собой целенаправленный и непрерывный процесс активизации и формирования характерных качеств математического мышления (гибкости, системности, критичности, логичности, вариативности, рациональности и др.) что приводит к стимуляции и упрочению способностей к продуктивному оперированию математическим содержанием. Поскольку ведущим типом мышления детей дошкольного возраста является наглядно-действенное мышление, а наглядно-образное мышление представляет собой ведущий тип мышления на границе перехода в начальную школу, основным способом обучения ребенка должен стать конструктивно-моделирующий способ деятельности с математическим материалом, а основным способом развития мыслительной деятельности - эмпирическое обобщение результатов своей собственной деятельности на основе сенсорно воспринимаемой информации.
И родители, и педагоги знают, что математика - это мощный фактор интеллектуального развития ребенка, формирования его познавательных и творческих способностей. Самое главное - это привить ребенку интерес к познанию. Для этого занятия должны проходить в увлекательной игровой форме.
Благодаря играм удаётся сконцентрировать внимание и привлечь интерес даже у самых несобранных детей дошкольного возраста. В начале их увлекают только игровые действия, а затем и то, чему учит та или иная игра. Постепенно у детей пробуждается интерес и к самому предмету обучения.
Таким образом, в игровой форме прививание ребенку знания из области математики, научите его выполнять различные действия, разовьете память, мышление, творческие способности. В процессе игры дети усваивают сложные математические понятия, учатся считать, читать и писать, а в развитии этих навыков ребенку помогают близкие люди - его родители и педагог.








Список использованной литературы:
1. Бондаренко А.К. «Дидактические игры в детском саду». - М.: Просвещение,1985.-175с.
2. Волина В.В. «Праздник числа». – М.: Просвещение, 1996. - 304 с.
3. Ерофеева Т.И., Павлова Л.Н., Новикова В.П. «Математика для дошкольников». - М.: Просвещение, 1992.-192с.
4. Леушина Л.М. «Формирование математических представлений у детей дошкольного возраста». - М.: Просвещение, 1974. – 368 с.
5. Логинова В.И. «Формирование у детей дошкольного возраста (3-6 лет) знаний о материалах и признаках, свойствах и качествах». - Л.: 1964.
6. Носова Е.А. «Предлогическая подготовка детей дошкольного возраста. Использование игровых методов при формировании у дошкольников математических представлений». - Л.: 1990.
7. Метлина Л.С. «Математика в детском саду». - М.: Просвещение, 1984. - 256 с.
8. Петерсон Л.Г., Е.Е. Кочемасова. Игралочка «Практический курс математики для дошкольников. Методические рекомендации».- М.: Баласс, 2001. - 176 с.
9. Сербина Е.В. «Математика для малышей». - М.: Просвещение, 1992.- 80 с.
10. Столяр А.А. «Формирование элементарных математических представлений у дошкольников». - М.: Просвещение, 1988.-303с.








13PAGE 15


13PAGE 14215




Дата
Подпись

Методист



Преподаватель