Рабочая программа алгебра 7 класс Макарычев Ю. Н.
Содержание
TOC \o "1-3" \h \z \u 1.Планируемые результаты освоения учебного предмета. PAGEREF _Toc461639036 \h 32.Содержание учебного предмета PAGEREF _Toc461639037 \h 83.Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы. PAGEREF _Toc461639038 \h 15
Планируемые результаты освоения учебного предмета.Данная рабочая программа по алгебре для 7 класса составлена в соответствии с федеральным государственным образовательным стандартом основного общего образования (утвержден приказом Минобрнауки РФ от 17.12 2010г., №1897), основной образовательной программой основного общего образования МБОУ «Пригородная СШ» на основе рабочих программ 7-9классы: учебное пособие для общеобразовательных организаций (составительТ.А.Бурмистрова:-М.:Просвещение,2016г) и с учетом учебного плана МБОУ «Пригородная СШ».
Для реализации рабочей программы используется следующий учебно-методический комплекс:
Макарычев, Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2013.
Макарычев Ю.Н., Миндюк Н.Г. Алгебра: Элементы статистики и теории вероятностей. 7–9 классы. М.: Просвещение, 2008.
Звавич Л.И., Кузнецова Л.В., Суворова С.Б. и др. Алгебра: Дидактические материалы. 7 класс. М.: Просвещение, 2013.
Звавич Л.И., Шляпочник Л.Я. Контрольные и проверочные работы по алгебре. 7-9 кл.: Методическое пособие. – М.: Дрофа, 2000
Целью обучения предмету «Алгебра» в 7 классе является продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов, алгоритмической культуры, пространственных представлений, способности к преодолению трудностей.
Основными задачами обучения предмету «Алгебра» в 7 классе являются:
выработать умения выполнять действия над степенями с натуральными показателями, познакомить с понятием степени с нулевым показателем;
обучить схемам рассуждений, составлению и использованию алгоритмов и алгоритмических предписаний;
выработать умение выполнять действия над многочленами. Убедить учащихся в практической пользе преобразований многочленов;
научить строить графики, сознавать важность их использования в математическом моделировании нового вида – графических моделей;
научить решать системы линейных уравнений и применять их при решении текстовых задач;
на большом количестве примеров и упражнений познакомить учащихся с начальными понятиями, идеями и методами комбинаторики, теории вероятности и статистики.
Цель и задачи обучения предмету «Алгебра» в 7 классе соответствуют следующим планируемым результатам:
Личностные результаты:
умение ясно, точно, грамотно излагать свои мысли в устной и письменной форме, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
критичность мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
представление' о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
креативность мышления, инициатива, находчивость, активность при решении математических задач;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
Метапредметные результаты:
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов.
Предметные результаты:
Ученик научится:
составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
выполнять основные действия со степенями с натуральными показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
решать линейные уравнения, системы двух линейных уравнений с двумя переменными;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи; • изображать числа точками на координатной прямой;
определять координаты точки плоскости, строить точки с заданными координатами.
Ученик получит возможность научиться:
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами;
для нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций.
Содержание учебного предметаГлава 1. Выражения, тождества, уравнения (26 часов)
Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.
Цель: систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.
Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.
Нахождение значений числовых и буквенных выражений даёт возможность повторить с обучающимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.
В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки ≥и ≤, дается понятие о двойных неравенствах.
При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.
Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия обучающимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах=bпри различных значениях а и b. Продолжается работа по формированию у обучающихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.
Изучение темы завершается ознакомлением обучающихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь пользовать эти характеристики для анализа ряда данных в несложных ситуациях.
Глава 2. Функции (18 часов)
Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и её график.
Цель: ознакомить обучающихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.
Данная тема является начальным этапом в систематической функциональной подготовке обучающихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у обучающихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу. Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у=кх, где к0, как зависит от значений к и b взаимное расположение графиков двух функций вида у=кх+b.
Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.
Глава 3. Степень с натуральным показателем (18 часов)
Степень с натуральным показателем и ее свойства. Одночлен. Функции у=х2, у=х3и их графики.
Цель: выработать умение выполнять действия над степенями с натуральными показателями.
В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора; Рассматриваются свойства степени с натуральным показателем: На примере доказательства свойств аm ·аn = аm+n; аm :аn = аm-n, где m>n; (аm)n = аm·n; (ab)m = ambmучащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений содержащих степени, особое внимание следует обратить на порядок действий.
Рассмотрение функций у=х2, у=х3позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание обучающихся на особенности графика функции у=х2:график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.
Умение строить графики функций у=х2и у=х3используется для ознакомления обучающихся с графическим способом решения уравнений.
Глава 4. Многочлены (23 часа)
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.
Цель: выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.
Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.
Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.
Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.
В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.
Глава 5.Формулы сокращенного умножения (23 часа)
Формулы (а - b )(а + b ) = а2 - b2, (а ± b)2 = а2± 2а b + b2, (а ± b)3 = а3 ± За2b+Заb2 ± b3, (а ± b)(а2 а b + b2)= а3 ± b3. Применение формул сокращённого умножения в преобразованиях выражений.
Цель: выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.
В данной теме продолжается работа по формированию у обучающихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b)(а + b) = а2 - b2, (а ± b)2 = а2± 2а b + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево». Наряду с указанными рассматриваются также формулы (а ± b)3 = а3 ± За2b+ Заb2 ± b3, (а ± b)(а2 а b + b2)= а3 ± b3. Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.
В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.
Глава 6.Системы линейных уравнений (17 часов)
Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.
Цель: ознакомить обучающихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.
Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.
Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.
Формируется умение строить график уравнения ах + bу=с, где а≠0 или b≠0, при различных значениях а, b, с. Введение графических образов даёт возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными. Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.
Глава 7. Элементы логики, комбинаторики, статистики.
Ознакомление учащихся с простейшими статистическими характеристиками: среднеарифметическим, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в несложных ситуациях.
Цель: ознакомить обучающихся с понятиями и с их применением.
8. Повторение (11 часов)
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 7 класса.
Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы.№ Тема Количество часов
1 Выражения. Тождества. Уравнения. 26
2 Функции. 18
3 Степень с натуральным показателем. 18
4 Многочлены. 23
5 Формулы сокращенного умножения. 23
6 Системы линейных уравнений 17
7
Элементы логики, комбинаторики,
статистики. 4
8 Повторение. 11