Внеклассная работа по математике как средство развития мотивации к учению учащихся.


Внеклассная работа по математике как средство развития мотивации к учению учащихся
учитель математики МБОУ «СОШ №1с.Ногир»
Джиоевой Л.Л.
Внеклассная работа по математике является составной частью учебного процесса, естественным продолжением работы на уроке. Она  отличается от классной работы тем, что строится на принципе добровольности.
Учитель может на внеклассных занятиях по математике в максимальной мере учесть возможности, запросы и интересы своих учеников. Внеклассная работа по математике дополняет обязательную учебную работу по предмету и должна, прежде всего, способствовать более глубокому усвоению учащимися материала, предусмотренного программой.
Одна из основных причин сравнительно плохой успеваемости по математике – слабый интерес многих учащихся к этому предмету. Интерес к предмету зависит, прежде всего, от качества учебной работы на уроке, В то же время с помощью продуманной системы внеурочных занятий можно значительно повысить мотивацию к учению математики школьников.
Внеурочные занятия с учащимися с успехом могут быть использованы для углубления знаний учащихся в области программного материала, развития их логического мышления, исследовательских навыков, смекалки, привития вкуса к чтению математической литературы, для сообщения учащимся полезных сведений из истории математики.
Внеклассная работа создает большие возможности для решения воспитательных задач, стоящих перед школой (в частности, воспитание у учащихся настойчивости, инициативности, воли, смекалки).
Внеурочные занятия с учащимися приносят большую пользу и самому учителю. Чтобы успешно проводить внеклассную работу, учителю приходится постоянно расширять свои познания по математике, следить за новостями математической науки. Это благотворно сказывается и на качестве его уроков.
Можно выделить следующие виды внеклассной работы по математике:
Работа с учащимися, отстающими от других в изучении программного материала;
Работа с учащимися, проявляющими к изучению математики повышенный интерес и способности;
Работа с учащимися по развитию интереса в изучении математики.
В третьем случае задача учителя заключается в том, чтобы заинтересовать учашихся математикой.
В связи с указанными выше видами внеклассной работы по математике можно выделить в ней следующие цели:
Своевременная ликвидация (и предупреждение) имеющихся у учащихся пробелов в знаниях и умениях по курсу математики;
Пробуждение и развитие устойчивого интереса учащихся к математике и её приложениям;
Расширение и углубление знаний учащихся по программному материалу;
Оптимальное развитие математических способностей у учащихся и привитие учащимся определённых навыков научно - исследовательского характера;
Воспитание высокой культуры математического мышления;
Развитие у школьников умения самостоятельно и творчески работать с учебной и научно - популярной литературой;
Расширение и углубление представлений учащихся о практическом значении математики;
Воспитание у учащихся чувства коллективизма и умения сочетать индивидуальную работу с коллективной;
Установление более тесных деловых контактов между учителем математики и учащимися, и на этой основе более глубокое изучение познавательных интересов и запросов школьников;
Создание актива, способного оказать учителю математики помощь в организации эффективного обучения математике всего коллектива данного класса.
Предполагается, что реализация этих целей частично осуществляется на уроках. Однако в процессе классных занятий, ограниченных рамками учебного времени и программы, это не удаётся сделать с достаточной полнотой. Поэтому окончательная и полная реализация этих целей переносится на внеклассные занятия этого вида.
Таким образом, внеклассная работа по математике выступает средством развития познавательного интереса учащихся через свои цели, задачи, содержание и формы проведения.
На сегодняшний день существуют различные формы проведения внеклассной работы по математике с учащимися. К ним можно отнести:
Математический кружок;
Школьный математический вечер;
Математическая олимпиада;
Математическая игра;
Школьная математическая печать;
Математическая экскурсия;
Математические рефераты и сочинения;
Математическая конференция;
Внеклассное чтение математической литературы и др.
Очевидно, формы проведения внеклассных занятий и приемы, используемые на этих занятиях, должны удовлетворять ряду требований.
Во-первых, они должны отличаться от форм проведения уроков и других обязательных мероприятий. Это важно, так как внеклассная работа строится на добровольных началах и обычно проводиться после уроков. Поэтому чтобы заинтересовать учащихся предметом и привлечь их к внеклассной работе необходимо проводить ее в необычной форме.
Во-вторых, эти формы проведения внеклассных занятий должны быть разнообразны. Ведь для того чтобы поддерживать интерес учеников, нужно постоянно их удивлять, разнообразить их деятельность.
В-третьих, формы проведения внеклассных занятий должны быть рассчитаны на различные категории учащихся. Внеклассная работа должна привлекать и проводиться не только для интересующихся математикой и одаренных школьников, но для учеников, не проявляющих интереса к предмету. Возможно, благодаря правильно выбранной форме внеклассной работы, рассчитанной на то чтобы заинтересовать и увлечь учащихся, такие ученики станут больше уделять внимания математике.
И, наконец, в-четвертых, эти формы должны выбираться с учетом возрастных особенностей детей, для которых проводиться внеклассное мероприятие.
Нарушение этих основных требований может привести к тому, что внеклассные занятия по математике будет посещать небольшое количество учеников или вообще перестанут посещать. Учащиеся занимаются математикой только на уроках, где у них нет  возможности испытать и осознать притягательные стороны математики, ее возможности в совершенствовании умственных способностей, полюбить предмет. Поэтому при организации внеклассной работы важно не только задумываться над ее содержанием, но и, обязательно, над методикой проведения, формой.
С каждым годом дети все равнодушнее относятся к учебе. В частности понижается интерес у учеников к такому предмету как математика. Этот предмет воспринимается учащимися как скучный и совсем не интересный. В связи с этим учителями ведется поиск эффективных форм и методов обучения математике, которые способствовали бы активизации учебной деятельности, формированию познавательного интереса.
Одной из таких форм является математическая игра.
Математические игры отличаются эмоциональностью, вызывают у учащихся положительное отношение к внеклассным занятиям по математике, а, следовательно, и к математике в целом; способствуют активизации учебной деятельности; обостряют интеллектуальные процессы и главное, способствуют формированию познавательного интереса к предмету. Но следует заметить, что математическая игра как форма внеклассной работы применяется довольно таки редко, в связи с трудностями организации и проведения. Таким образом, большие образовательные, контролирующие, воспитывающие возможности (в частности возможность развития познавательного интереса) применения математической игры во внеклассной работе по математике реализуются недостаточно.
Математические игры призваны решать следующие задачи.
Образовательные:
Способствовать прочному усвоению учащимися учебного материала;
Способствовать расширению кругозора учащихся и др.
Развивающие:
Развивать у учащихся творческое мышление;
Способствовать практическому применению умений и навыков, полученных на уроках и внеклассных занятиях;
Способствовать развитию воображения, фантазии, творческих способностей и др.
Воспитательные:
Способствовать воспитанию саморазвивающейся и самореализующейся личности;
Воспитать нравственные взгляды и убеждения;
Способствовать воспитанию самостоятельности и воли в работе и др.
Математические игры выполняют различные функции.
Во время математической игры происходит одновременно игровая, учебная и трудовая деятельность. Действительно, игра сближает то, что в жизни не сопоставимо и разводит то, что считается едино.
Математическая игра требует от школьника, то чтобы он знал предмет. Ведь не умея решать задачи, разгадывать, расшифровывать и распутывать ученик не сможет участвовать в игре.
В играх ученики учатся планировать свою работу, оценивать результаты не только чужой, но и своей деятельности, проявлять смекалку при решении задач, творчески подходить к любому заданию, использовать и подбирать нужный материал.
Результаты игр показывают школьникам их уровень подготовленности, тренированности. Математические игры помогают в самосовершенствовании учащихся и, тем самым побуждают их познавательную активность, повышается интерес к предмету.
Во время участия в математических играх учащиеся не только получают новую информацию, но и приобретают опыт сбора нужной информации и правильного ее применения.
 Виды математических игр.
Настольные игры;
Математические мини-игры;
Викторины;
Игры по станциям;
Математические конкурсы;
КВНы;
Игры-путешествия;
Математические лабиринты;
Математическая карусель;
Бои;
Разновозрастные.
Некоторые из вышеперечисленных видов игр могут быть включены в другие, более большие математические игры, как один из их этапов. Теперь же рассмотрим конкретно каждый вид.
Настольные игры.
К настольным играм относят такие математические игры как математическое лото, игры на шахматной доске, игры со спичками, различные головоломки и т.п. Подготовительный этап таких игр проводится в основном перед самой игрой, на нем разъясняются в основном правила игры. Настольные математические игры не рассматриваются как отдельная форма внеклассного занятия, а используются обычно как часть занятия, могут быть включены в другие математические игры. Дети могут играть в них в любое свободное время, даже на перемене (например, разгадывать какую либо головоломку).
Рассмотрим некоторые из наиболее распространенных настольных игр.
Математическое лото. Правила у игры те же, что и при игре в обычное лото. Каждый из учеников получает карту, на которой написаны ответы. Ведущий игры берет пачку карточек, на которых написаны задания и вытаскивает одну из них. Читает задание, показывает всем участникам игры. Участники решают задания устно или письменно, получают ответ, находят его у себя на игральной карточке. Закрываю этот ответ специально заготовленными фишками. Выигрывает тот, кто первый закроет карточку. Проверка правильности закрытия карты обязательна, она является не только контролирующим моментом, но и обучающим. Можно заготовить жетоны таким образом, что после закрытия всей карты, у учащегося получился с помощью этих жетонов рисунок, тем самым можно проверить правильность закрытия карты. Перед началом игры можно провести разминку, на которой вспоминаются формулы, правила, знания, необходимые для проведения игры.
Игры со спичками. Данные игры могут проводиться в различной форме, но суть у них остается одна, учащимся даются задания, в которых нужно построить фигуру из спичек, путем перемещения одной или нескольких спичек получить другую фигуру. Вопрос игры и заключается в том, какую именно спичку нужно переложить.
Очень нравятся детям игры-головоломки. В них нужно расположить особым образом определенные фигуры или числа в таблице. Возможен и другой вариант такой игры. Например, игра, где из различной формы кусочков бумаги нужно собрать фигуру, да еще попытаться найти, как можно больше различных вариантов сбора.
Так же встречаются настольные игры-поединки между двумя участниками. Это такие игры как крестики-нолики в различных вариациях, игры на шахматной доске, игры с использованием спичек и многие другие. В таких играх необходимо выбрать нужную, выигрышную стратегию. Проблема и заключается в том, что сначала нужно догадаться какая именно стратегия является выигрышной. В математике даже существует такой тип нестандартных задач, где как раз нужно найти выигрышную стратегию игры и обосновывать ее математически (теория игр).
Примером такой игры может служить следующая игра. На стол кладутся спички в ряд. Играют двое игроков. Они по очереди берут одну, две или три спички. Выигрывает тот, кто берет последнюю спичку.
Настольные игры настолько многообразны, что описать их общую структуру очень сложно. Общее у них то, что они в основном не подвижные, индивидуальные, требуют умственного труда. Они захватывают и заинтересовывают учащихся, развивают у них настойчивость и упорство в достижении цели, способствуют возникновению интереса к математике.
Математические мини-игры.
На самом деле настольные игры тоже можно назвать мини-играми, но в них входят в основном «тихие» игры. К этому же виду относятся небольшие подвижные игры, которые могут быть включены как один из этапов в более большие математические игры, так и быть часть внеклассного занятия.
Чем же отличаются эти игры от остальных? В таких играх дети в основном решают задания и получают за это определенное количество очков. Выбор задания проходит в различных игровых формах. К таким играм можно, например, отнести «Математическую рыбалку», «Математическое казино», «Стрельба по мишеням», «Математическое (чертово) колесо» и т.п. Такие игры состоят из следующих этапов. Сначала ученик производит какое-либо игровое действие (вылавливает рыбку из пруда, кидает дротиком в мишень, бросает игральные кости и др.). В зависимости от того, какой будет результат этого действия (какую рыбку поймал, сколько очков выпало на игральных костях, в какую часть мишени попал и др.) ученику выдается определенная задача, которую он должен решить. Решив эту задачу, ученик получает свои заслуженные баллы и право получить новую задачу, совершив при этом соответствующее игровое действие.
В «Математическом казино» ученик бросает кости только после решения задачи, тем самым, определяя свои выигранные баллы. В игре «Математическое (или чертово) колесо» игроки двигаются как бы по кругу, в котором имеется начальный и конечный этап, бросая кости, они тем самым определяют, на какой этап этого колеса они попадают. Не решив задачу, они возвращаются на предыдущий этап и, чтобы вновь получить право бросить кости решают задачу этого этапа. Выигрывает игрок, сумевший выйти из этого круга или набравший большее количество баллов. Огромную роль для выигрыша здесь имеет удача участника игры. Поэтому то эту игру часто называют «Чертовым колесом».
Все эти игры ограничены по времени. В конце игры подсчитываются баллы и определяются победители.
Математические мини-игры как бы имитируют определенную (жизненную) ситуацию: ловля рыбы, игру в казино и другие, благодаря этому мини-игры завлекают детей, у школьников возникает интерес, они стремятся правильно решить как можно больше задач, прилагая к этому все свои силы и знания.
Среди мини-игр также можно выделить небольшую группу игр-соревнований. К таким играм можно отнести, например, «Математическую эстафету», различные конкурсы капитанов, входящие в более крупные математические игры. Это в основном игры на скорость выполнения заданий, но и качество их выполнения играет тоже не последнюю роль. Это могут быть как командные соревнования, так и между двумя участниками. Эти игры насыщены эмоциональными переживаниями, что свойственно обычным соревнованиям, где нужно быстрее и лучше соперника справиться с поставленной задачей. Поэтому они очень нравятся школьникам, и включение их во внеклассные занятия или другие игры по математике способствует развитию интереса учащихся.
Математические викторины.
Казалось бы, этот тип игры тоже мог бы быть включен в предыдущий тип игр, но ярко выраженной игровой ситуации в них не наблюдается. Математические викторины очень часто включаются в математические вечера, в занятии математического кружка, используются как этап другой математической игры.
Математические викторины легко организовать. В них может принять участие каждый желающий. Суть их заключается в том, что участникам задаются вопросы, на которые они должны ответить. Викторины проводятся по-разному, в зависимости от числа участников.
Если участников не очень много, то каждый вопрос или задача зачитываются человеком, проводящим викторину. На обдумывание ответа дается несколько минут. Отвечает тот, кто первым поднимет руку. Если ответ не полный, то можно предоставить возможность высказаться еще и другому участнику. За правильный ответ присуждается определенное количество очков.
Если же участников много, то текст всех вопросов и задач выписываются на доске, на отдельных плакатах или раздаются школьникам на отдельных листах, где они пишут ответы и краткое объяснение. Потом листочки сдаются жюри, где они проверяются, подсчитываются баллы.
Победителями становятся участники, набравшие наибольшее количество баллов.
Возможны случаи, когда викторины проводятся для команд. В этом случае каждой команде зачитывается определенное количество вопросов, возможны варианты ответов на них. Участники команд должны за определенное время ответить правильно на как можно большее количество вопросов. Выигрывает команда, давшая больше правильных ответов. Вопросы, задаваемые командам должны быть равноценными.
С помощью викторин можно не только заинтересовать учащихся математикой, используя необычной формы вопросы, но и проконтролировать уровень их знаний предмета (особенно в том случае, когда она проходит в письменной форме).
Рассмотренные выше игры могут включаться во внеклассные занятия по отдельности, а могут и в своей совокупности составлять большой блок игр, занятие в игровой форме, то есть большую математическую игру. Эта игра может быть проведена в различных формах. В зависимости от характера проведения таких игр различают следующие виды:
Игры по станциям.
В играх данного типа обычно перед участниками ставиться определенная игровая цель, в зависимости от общего сюжета игры, ее темы. Это может быть цель найти клад, собрать карту, дойти до конечной станции (таинственного города) и т.п.
Как видно из названия данные игры проводятся по станциям. В такой игре обычно участвуют команды, и именно они ходят по станциям, выполняют на каждой из них определенные задания и получают за это баллы, часть карты, либо подсказки, помогающие достичь участникам поставленной перед ними цели. Каждая из станций представляет собой небольшую игру. Команды ходят по станциям, пользуясь специально выданными им листами-путеводителями. Игра по станциям проходит обычно в нескольких кабинетах, в которых располагаются различные станции. В таких играх участвуют обычно несколько классов, поэтому они являются массовыми и продолжительными по времени. Для проведения такой игры требуется много людей. В школе для проведения подобной игры по станциям могут привлекаться старшие классы. Итогом игры является достигнутая командами цель игры.
Игры такого вида имеют необычный сюжет и часто являются театрализованными, то есть в ее начале разыгрывается какая-нибудь ситуация с помощью которой перед участниками ставится цель игры. Отдельные станции, по которым будут ходить участники, тоже могут быть театрализованы. Эта необычность очень привлекает и заинтересовывает не только участников игры, но и учеников принимающих участие в проведении игры. У школьников возникает интерес к математике, они по новому воспринимают этот, казалось бы, «скучный» и «сухой», неинтересный предмет.
К такому виду игр можно отнести «Математические следопыты», «Математический поезд», «Математический кросс» и другие.
Математические конкурсы.
Математические конкурсы можно рассматривать как часть большой игры или вечера (например, конкурс капитанов). Так же конкурс можно рассматривать как соревнование по выполнению какой-либо работы или проекта (конкурс на лучшую математическую сказку, конкурс на лучшую математическую газету и т.п.). Здесь же будут рассматриваться математические конкурсы как отдельные самостоятельные мероприятия, математические игры, в состав которых могут входить как их элементы другие более мелкие математические игры (например, викторины, эстафеты и др.).
Математические конкурсы – это соревнования, которые могут проводиться как между отдельными участниками игры, так и между командами. Это наиболее часто используемый тип математических игр. К нему можно отнести такие игры как «Звездный час», «Счастливый случай», «Колесо математики» и другие.
В конкурсе всегда есть победитель и он единственный, возможен случай и ничьей. При проведении математических конкурсов обычно присутствуют не только сами участники игры, но и зрители, болеющие за них. Поэтому в таких видах игр всегда предусмотрены и задания (конкурсы) для зрителей.
Особой подготовки участников к игре не требуется. В основном нужно лишь собрать команду и разобрать примерные задания. Данный тип игр настолько разнообразен и универсален, что позволяет проводить внеклассные занятия по математике как можно чаще в форме математической игре, и тем самым привлечь к ним больше учеников. Школьники заинтересовываются и даже иногда сами изъявляют желание придумать свою математическую игру и провести ее.
КВНы.
КВН – это тоже математический конкурс. Но он настолько популярен и необычен, что отнесем его в отдельную группу математических игр.
КВНы проводятся между несколькими командами. Эти команды заранее готовятся к игре, придумывают приветствие другим командам, домашнее задание, в виде представления.
Сам КВН тоже может проводиться в виде какого-нибудь представления, разыгрываются небольшие сценки между конкурсами, может быть в форме путешествия. Помещение, в котором проходит игра, ярко и красочно оформляется. На КВНах обычно присутствуют зрители, поэтому предусматривается и конкурс для зрителей. Так же эта игра предполагает наличие жюри.
Все КВНы строятся приблизительно по одному плану, в которых входят традиционные конкурсы:
Приветствие. В этом конкурсе команда должна пояснить свое название, рассказать о членах команды, обратиться к соперникам и жюри.
Разминка (для команд и болельщиков). Командам даются задания, на которые они должны как можно быстрее ответить. Может проходить в форме викторины.
Пантомима. В этом конкурсе обыгрываются различные математические понятия.
Конкурс художников. В этом конкурсе нужно изобразить, используя геометрические фигуры, графики функций и т.п., изобразить что-либо, а так же придумать рассказ по своему рисунку.
Домашнее задание. Оно должно соответствовать теме КВНа и быть представлено в виде сценки, песни или стихотворения.
Конкурс капитанов. Капитанам команд предлагается решить более сложные задачи, чем в разминке. Этот конкур может пройти в форме какой-нибудь небольшой игры-соревнования.
Специальные конкурсы. Должны соответствовать теме КВНа, их может быть несколько. Например, исторический конкурс, расшифровка ребуса и др.
Каждый конкурс оценивается жюри определенным количеством баллов, и после его окончания жюри объявляет результаты. В КВНе выигрывает та команда, которая набрала наибольшее количество баллов по результатам всех конкурсов.
Математические КВНы имеет такую популярность из-за своей необычной формы проведения и из-за имеющейся на телевидении одноименной передачи, являющейся прообразом данного вида игр. В этой игре участники имеют возможность проявить не только свои математические, но и творческие способности. Школьники с удовольствием принимают участие в таких играх не только как участники, но и как зрители. Математические КВНы таким образом способствуют развитию интереса к одному из труднейших школьных предметов – математике, которая в этой игре совсем не кажется трудной, а наоборот становиться интересной и занимательной.
Игры-путешествия.
Такой тип игры отличается от остальных (в частности от игр по станциям) тем, что они проходят в отдельно взятом помещении, дети не ходят по станциям, а сидят на своих местах и принимают участие в предложенных им заданиях, отвечают на них. Игры-путешествия проходят обычно в театрализованной форме. Перед учащимися разыгрывается спектакль, в течение которого им необходимо выполнять некоторые задания, для того, чтобы помочь героям достичь их, узнают новые факты. Поэтому данный тип игр носит не только развлекательный характер, но и обучающий. Во время игры учащиеся могут мысленно попадать в другие страны, в различные выдуманные города, встречать необычных героев, что очень нравится им, вызывает у них положительные эмоции. Результатом игры является цель, достигнутая героями спектакля с помощью учеников, как таковых победителей в таких играх нет, а есть лишь один победитель – все участники игры.
Такие игры проводятся в основном для младших классов. Такой тип игры как нельзя лучше подходит для детей младшего возраста, для того чтобы развить у них интерес к математике.
К такому виду игр можно отнести игру «Приключения Винни Пуха и Пяточка в стране математики», «В гостях у царицы математики» и другие.
Математические лабиринты.
Данный тип игр был назван так, потому что по свой структуре напоминает лабиринт, с его запутанными ходами. В лабиринте каждый правильно сделанный поворот, поможет тебе выбраться из лабиринта. А если ты сделал хоть один неправильный поворот, то и выбраться из лабиринта не сможешь. Точно также устроены и математические лабиринты. Каждое правильно решенное задание игры приближает вас к верному конечному результату игры, а единственная ошибка может привести к неверному. Игра проходит поэтапно. Ответ на задание в каждом этапе определяет, на какой этап игры нужно идти дальше. В итоге ты приходишь к конечному результату. Именно он и проверяется. Это может быть ответ на задание последнего этапа, либо какая-нибудь картинка и т.п. Если конечный результат не верный, то надо искать на каком из этапов игры была совершена ошибка и, следовательно, проходить часть лабиринта заново. Таким образом, участники игры учатся не только правильно решать задачи, но проверять свои решения, находить ошибки.
Лабиринты могут быть как подвижными, так и тихими, командными и индивидуальными. Их можно проводить по отдельно взятой теме, тем самым, контролируя усвоение учащимися материала. Они могут включать в себя различные занимательные задачи.
Участвуя в игре, участники упорно и настойчиво пытаются достичь правильного результата игры, старательно решают задания и проверяют их, умственно трудятся. У детей воспитывается соответствующие качества личности, развивается интерес к математике.
Математическая карусель.
К этому виду игр относится одна игра, которая так и называется «Математическая карусель». Отнести ее к другим играм довольно таки сложно, так как она имеет отличительные от всех, свойственные только ей особенности. Поэтому по моему мнению ее следует отнести к отдельному виду математических игр.
Игра является командной, проводиться обычно между несколькими классами, возможно даже между школами. Игра имеет два рубежа. Изначально команда находится на исходном рубеже. Важен так же порядок, в котором сидят участники команды, все ее участники должны иметь порядковый номер. Команде выдается задача. Если команда решит задачу, то первый ее участник отправляется на зачетный этап, где ему выдается зачетная задача, за которую команде и будут начисляться баллы. В это же время оставшиеся на исходном рубеже участники команды решают следующую задачу, правильное решение которой позволит перейти на зачетный рубеж следующему члену команды. Таким образом на зачетном рубеже зачетные задачи будут решать больше учеников. И так далее. Если же на зачетном рубеже ученики не правильно решают задачу, то участник с наименьшим порядковым номером возвращается на исходный рубеж. Вот поэтому-то игра и называется «Математической каруселью», так как в ней постоянно происходит круговое движение участников.
За каждой командой должен следить отдельный человек (или за двумя командами), он же проверяет правильность решения задач, и соблюдение всех правил игры.
В такой игре принимают участие обычно сильные, увлекающиеся математикой, ученики. Их привлекает к участию в ней необычность самой игры, трудность предложенных задач и сложность получения баллов. Ведь баллы засчитываются только за решение задач на зачетном рубеже, которые обычно сложнее, чем на исходном рубеже. Познавательный интерес к математике у таких детей становиться еще больше.
Математические бои.
К такому виду игр относят непосредственно сам «Математический бой», «Морской бой», различные баталии.
В таких боях обычно участвуют две команды, которые соревнуются между собой в уровне имеющихся у них математических знаниях. Участвуют в боях обычно самые сильные и способные ученики в классе, по отношению к математике.
В таких играх также важно не только хорошо уметь решать задачи, но и правильно выбрать стратегию игры.
Вывод.
Существуют различные подходы к определению понятия игры, но все они сходятся в одном, что игра является способом развития личности, обогащения ее жизненного опыта.
Из всего многообразия игр можно выделить математическую игру, как средство развития познавательного интереса учащихся к математике. Использование математической игры во внеклассной работе по математике наиболее эффективно способствует возникновению интереса у учащихся к математике.
Математическая игра имеет свои цели, задачи, функции и требования. Основная цель игры по математике – развитие устойчивого познавательного интереса к предмету через имеющееся многообразие математических игр.
Математические игры очень разнообразны. Их можно классифицировать по назначению, по массовости, по реакции, по темпу и др. Так же можно выделить классификацию по схожести правил и характера проведения, которая включает в себя следующие виды игр: настольные, мини-игры, викторины, по станциям, конкурсы, КВНы, путешествия, лабиринты, математическую карусель, бои и разновозрастные игры.Игра по математике имеет свою структуру, куда входят: игровой замысел, правила, содержание, оборудование, результат.
Игра проходит по следующим этапам: предварительная работа, подготовительный этап, сама игра, заключение.
Для того, чтобы игра прошла успешно нужно учитывать требования к подбору задач и требования к проведению самой игры, что поможет оставить у учащихся приятные впечатления от нее, и следовательно появления интереса к математике.
Как практика учителей со стажем, так и мой личный опыт подтверждают, что использование математической игры во внеклассной работе по математике способствует развитию познавательного интереса у учащихся к математике. На это указывают и мнения самих учеников, и повышение успеваемости, активности на уроках математики после проведения математических игр.
Подводя итоги всего вышесказанного, считаю, что математическая игра, как эффективное средство развития познавательного интереса, должна использоваться во внеклассной работе по математике как можно чаще.
Литература:
Дышинский, Е.А. Игротека математического кружка. – 2010.-142с.
Самойлик, Г.  Развивающие игры. Математика. Приложение к газете «Первое сентября», 2002. - №24.
Степанов, В.Д. Активизация внеурочной работы по математике в средней школе. Книга для учителя / М: Просвещение, 1991. – 80с
Формирование интереса к учению у школьников. / под ред. А.К. Маркова./ - М: Просвещение, 1986. – 192с.
Шаталов, Г. Способы повышения мотивации обучения. Математика. Приложение к газете «Первое сентября», 2003. - №23.