Из истории интегрального исчисления


Из истории интегрального исчисления ИНТЕГРАЛ (от лат. integer — целый), одно из важнейших понятий математики. Оно возникло в связи с потребностью, с одной стороны, отыскивать функции по их производным. Например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости этой точки. А с другой — измерять площади, объёмы, длины дуг, работу сил за определённый промежуток времени и т. п. В соответствии с этим различают неопределённые и определённые интегралы, вычисление которых является задачей интегрального исчисления. Интегральный метод зародился в трудах древнегреческого учёного Архимеда(III век до нашей эры) при вычислении им площадей и объёмов некоторых фигур и тел. Архимед предвосхитил многие идеи этого метода, но потребовалось свыше полутора тысяч лет, прежде чем они получили чёткое математическое оформление и превратились в интегральное исчисление. Основные понятия и теория интегрального и дифференциального исчислений, прежде всего связь операций дифференцирования и интегрирования, а также их применение к решению прикладных задач были разработаны в конце XVII века, но основывались на идеях, сформулированных в начале XVII века немецким учёным И. Кеплером. В 1615 г. он нашёл формулы для вычисления объёма бочки и для объёмов самых различных тел вращения: лимона, яблока, айвы и даже турецкой чалмы. Для каждого из тел Кеплеру приходилось создавать новые, зачастую очень хитроумные, методы, что было крайне неудобно. Попытка найти общие, но главное простые методы решения подобных задач и привела к возникновению интегрального исчисления. Немецкий учёный Г. Лейбниц одновременно с английским учёным И. Ньютоном и независимо от него открыл основные принципы дифференциального и интегрального исчисленийв 80-х годах XVII века. Теория приобрела силу после того, как Лейбницем и Ньютоном было доказано, что дифференцирование и интегрирование – взаимно обратные операции. Об этом свойстве хорошо знал и Ньютон. Но только Лейбниц увидел здесь ту замечательную возможность, которую открывает применение символического метода. Всю свою сознательную жизнь он стремился выразить законы мышления, человеческую способность думать в виде математического исчисления. Интеграл у Ньютона (флюента) выступал, прежде всего, как неопределённый, т. е. как первообразная. Понятие интеграла у Лейбница выступало, напротив, прежде всего в форме определённого интеграла в виде суммы бесконечного числа бесконечно малых дифференциалов, на которые разбивается та или иная величина. Введение понятия интеграла и его обозначений Г. Лейбницем относится к осени 1675 г. Знак интеграла был опубликован в статье Лейбница в 1686 г. Термин «интеграл» впервые в печати употребил швейцарский учёный Я. Бернулли в 1690 г . После чего вошло в обиход и выражение «интегральное исчисление» (Лейбниц сначала говорил о «суммирующем исчислении»).Вычисление интегралов производили Г. Лейбниц и его ученики, первыми из которых стали братья Я. и И. Бернулли. Они сводили вычисления к обращению операции дифференцирования, т. е. к отысканию первообразных (постоянная интегрирования в печати появилась в статье Лейбница в 1694 г.). И. Ньютону, Г. Лейбницу и некоторым их современникам принадлежит применение методов графического интегрирования.При вычислении интегралов с определёнными пределами с помощью неопределённых интегралов как Ньютон, так и Лейбниц пользовались носящей их имя формулой, однако современная терминология была создана только в конце XVIII века. Основные работы по дальнейшему развитию интегрального исчисления в XVIII веке принадлежат швейцарскому учёному И. Бернулли и особенно российскому учёному Л. Эйлеру. Его «Интегральное исчисление» (1768-1770) являлось настольной книгой крупнейших учёных 2-й половины XVIII века. Интеграл с произвольной постоянной назывался полным, с фиксированной постоянной – частным. А значение частного интеграла при каком-либо значении аргумента давало величину, позднее названную определённым интегралом. Эйлер систематизировал прежние приёмы вычисления неопределённых интегралов, разработал новые, а также существенно развил теорию определённых интегралов. Термин «определённый интеграл» предложил в 1779 г. французский учёный П. Лаплас, а современную запись – в 1819–1822гг. французский учёный Ж. Фурье. Ж. Фурье (1768-1830 гг.)П.Лаплас (1749-1827 гг.)