Разработка урока по математике на тему Решение логарифмических уравнений и неравенств в модульной технологии


ГбОУ СПО
Колледж туризма и гостиничного сервиса
Санкт-Петербурга
О.А.Малышева
Разработка модуля
Решение логарифмических уравнений и неравенств
для студентов I курса
Специальность 260807 «Организация обслуживания в общественном питании»
Санкт-Петербург
2011г.
Технологическая карта занятия
Тема: Решение логарифмических уравнений и неравенств
Цели:
Обучающие:
сформировать практические умения решать логарифмические уравнения и неравенства
совершенствовать общеучебные умения и навыки в области математики
Развивающие:
совершенствовать математическое мышление, развивать способность самостоятельно организовывать свою деятельность.
Воспитательные:
положительную мотивацию изучения математики через достижение успеха на различных этапах учебной деятельности.
Используемая технология: модульная.
Методы активизации учебной деятельности студентов:
входной контроль
- тестирование
- творческая работа в группах
практическая работа
выходной контроль
рефлексия
Наглядные пособия: таблицы логарифмов, графики логарифмической функции, слайды.
Дидактические материалы: тестовые задания, задания для практической работы, материалы для промежуточного и выходного контроля, ТК студента.
ТСО: мультимедийная установка.
Структура модуля
М ЦелеполаганиеМ1 Входной контроль
М2-М7Практическая деятельность
Промежуточный контроль
М8 Выходной контроль
М9 Подведение итогов
М10 Рефлексия
Ход урока
Цели и задачи модуля Структура модуля Содержание модуля Формы УД Содержание деятельности преподавателя Содержание деятельности студента
Знать: осн. лог. формулы; свойства логарифмической функции.
Уметь: применять знания для решения конкретных задач.
организационный Взаимное приветствие коллективная проверка присутствия студентов
1.работа с дневником посещаемости
2.внутренй настрой на УД
3.концентрация внимания
Проверить знания студентов по темам «Свойства логарифмической функции»
«Логарифмические формулы» Проверка д/зКонтроль качества выполнения д/з, фронтальная 1.Проверка факта выполнения
2.Контроль и оценка Коррекция решений
Актуализация знаний УЭ1Входной контроль 1.тестирование
2.творческая работа в группах 1.фронтальная
2. групповая 1.Предъявляет тест, инструктирует
2.дает задание группам 1.выполняют задание
2. обсуждают план выполнения задания и выполняют
Формирование умений решать простейшие логарифмические уравнения УЭ2Практическая деятельность Решение уравнений по образцу
Промежуточный контроль индивидуальная Управление индивидуальной деятельностью студентов Письменное выполнение
М2Формирование умений решать логарифмические уравнения методом потенцирования УЭ3
Практическая деятельность Решение уравнений по образцу
Промежуточный контроль индивидуальная Управление индивидуальной деятельностью студентов Письменное выполнение М3
Формирование умений решать логарифмические уравнения методом введения новой переменной УЭ4Практическая деятельность Решение уравнений по образцу
Промежуточный контроль индивидуальная Управление индивидуальной деятельностью студентов Письменное выполнение М4Формирование умений решать логарифмические уравнения методом логарифмирования
УЭ5
Практическая деятельность Решение уравнений по образцу
Промежуточный контроль индивидуальная Управление индивидуальной деятельностью студентов Письменное выполнение М5
Формирование умений решать логарифмические уравнения,
приводя логарифмы к одному основанию УЭ6Практическая деятельность Решение уравнений по образцу
Промежуточный контроль индивидуальная Управление индивидуальной деятельностью студентов Письменное выполнение М6Формирование умений решать логарифмические неравенства. УЭ7Практическая деятельность Решение неравенств по образцу
Промежуточный контроль индивидуальная Управление индивидуальной деятельностью студентов Письменное выполнение М7Проверка усвоенных умений УЭ8
Выходной контроль Решение задач индивидуальная Наблюдение за деятельностью студентов, анализ возникающих проблем Письменное выполнение М8
Подведение итогов УЭ9Повторение, обобщение методов решения логарифмических уравнений и неравенств.
Постановка задач на следующее занятие фронтальная Организацияв форме беседы повторения, обобщения методов решения уравнений и неравенств, оценка учебной деятельности студентов. Участие в фронтальном обсуждении итогов занятия.
Рефлексия УЭ10 Оценивают свою деятельность, описывают свои эмоции индивидуальная Инструктирует по заполнению таблицы Заполнение таблицы
Приложения
Тестовые задания
Материал для групповой работы
Материал для практической работы
Таблица для проведения рефлексии
ТЕСТ
Установите соответствие между выражениями правого и левого столбцов:
1.logab+logaca.nlogab2. logab-logacb.loga(bc)
3.logaxn c. loga(b-c)
4.alogab d. loga(b+c)
5.loganb e.nloga
i.ak.bl.
m. logabВыберите правильный ответ:
1.log27
a)больше 0, б)меньше 0,в)равен 0.
2.log20,4
a)больше 0, б)меньше 0,в)равен 0.
3.log0,70,9
a)больше 0, б)меньше 0,в)равен 0.
4.lg12
a)больше 0, б)меньше 0,в)равен 0.
5.lg8
a)больше 0, б)меньше 0,в)равен 0.
Вычислите и запишите ответ:
1.log28; 2.log20,25; 3.lg0,01; 4.log0,54; 5.6log613
Cравните (поставьте знак >,<, или =):
1.log27 и log20,4; 2.log0,13 и log0,12,5 3.если log0,6x>log0,6y, то х ? у
Найдите, при каких значениях «х» выражение имеет смысл:
1. log7(2x-3) 2. log0,3(x2+4x)
РАБОТА В ГРУППАХ
Творческая работа
Группа 1: Найдите ошибку в следующих рассуждениях:

Группа 2:
Известно, что log303=a, log305=b. Чему равен log308?
Группа 3:
Выясните, какое число больше: log23+log32 или 2.
ТЕХНОЛОГИЧЕСКАЯ КАРТА СТУДЕНТА
Практическое занятие
Решение логарифмических уравнений и неравенств
Цель: научиться решать логарифмические уравнения и неравенства
Уважаемые студенты!
Выполнив все задания этого модуля, Вы научитесь решать логарифмические уравнения и неравенства.
Эти умения помогут Вам:
Успешно сдать экзамен
В процессе решения задач Вы можете усовершенствовать Ваши умственные способности, что поможет Вам успешно осваивать специальные дисциплины.
Базовые понятия:
1.Логарифм числа «в» по основанию «а» – это показатель степени, в которую надо возвести «а», чтобы получить «в».2.Решить уравнение – это значит найти все его корни или доказать, что их нет.
3.Корнем уравнения называется число, при подстановке которого в уравнение получается верное числовое равенство.
4.Решением неравенства называется множество чисел, при подстановке которых в неравенство получается верное числовое неравенство.
5.Логарифмирование – это переход от данного выражения к его логарифму.
6.Потенцирование – это переход от равенства, содержащего логарифмы, к равенству, не содержащему их.
7.Логарифмическая функция – это функция вида
у = logab, где a>0, b>0, a≠1
8.Основные свойства:
Если 0<a<1, то функция убывает, т.е. чем больше аргумент, тем меньше значение функции и наоборот (сформулируйте - как?)
Если a>1, то функция возрастает, т.е. чем больше аргумент, тем больше значение функции и наоборот (сформулируйте - как?)
№ модуля Учебный материал Руководство по усвоению учебного материала
М Интегрирующая цель:
Сформировать практические умения решения логарифмических уравнений и неравенств
Задачи: совершенствовать общеучебные , интеллектуальные умения и навыки.
Внимательно прочитайте цели и задачи
М1Всесторонняя проверка знаний по теме «Логарифмы. Логарифмическая функция» Входной контроль
ТЕСТ
Установите соответствие между выражениями правого и левого столбцов:
1.logab+logaca.nlogab2. logab-logacb.loga(bc)
3.logaxnc. loga(b-c)
4.alogabd. loga(b+c)
5.loganbe.nloga
i.a
k.b
l.
m. logabВыберите правильный ответ:
1.log27
a)больше 0, б)меньше 0,в)равен 0.
2.log20,4
a)больше 0, б)меньше 0,в)равен 0.
3.log0,70,9
a)больше 0, б)меньше 0,в)равен 0.
4.lg12
a)больше 0, б)меньше 0,в)равен 0.
5.lg8
a)больше 0, б)меньше 0,в)равен 0.
Вычислите и запишите ответ:
1.log28; 2.log20,25; 3.lg0,01; 4.log0,54; 5.6log613
Cравните (поставьте знак >,<, или =):
1.log27 и log20,4; 2.log0,13 и log0,12,5 3.если log0,6x>log0,6y, то х ? у
Найдите, при каких значениях «х» выражение имеет смысл:
1. log7(2x-3) 2. log0,3(x2+4x) 3.*logn√
Максимум - 20 баллов
По эталонам ответов (Слайд №..) проверьте работы друг друга
Творческая работа
Группа 1: Найдите ошибку в следующих рассуждениях:

Группа 2:
Известно, что log303=a, log305=b. Чему равен log308?
Группа 3:
Выясните, какое число больше: log23+log32 или 2.
Вспомните свойства логарифмической функции, неравенств, логарифмические формулы.
М2Практическая деятельность Цель: научиться решать простейшие лог.уравненияРешите простейшие логарифмические уравнения:

Промежуточный контроль: решить уравнение по индивидуальному заданию (оценка не ставится)
Смотрите ОБРАЗЕЦ
№1
М3
Практическая деятельность Цель: научиться решать лог.уравнения методом потенцирования:
Решите логарифмические уравнения методом потенцирования:

Промежуточный контроль: решить уравнение по индивидуальному заданию (оценка не ставится)
Смотрите ОБРАЗЕЦ
№2
М4Практическая деятельность Решите уравнения, введя новую переменную:

Промежуточный контроль: решить уравнение по индивидуальному заданию (оценка не ставится) Смотрите ОБРАЗЕЦ
№3
М5
Практическая деятельность Решите уравнения методом логарифмирования:

Промежуточный контроль: решить уравнение по индивидуальному заданию (оценка не ставится)
Смотрите ОБРАЗЕЦ
№4
М6
Практическая деятельность
Решите уравнения, приведя логарифмы к одному основанию:

Промежуточный контроль: решить уравнение по индивидуальному заданию (оценка не ставится)
Смотрите ОБРАЗЕЦ
№5
М7Практическая деятельность
Решите логарифмические неравенства:

Промежуточный контроль: решить уравнение по индивидуальному заданию (оценка не ставится)
Смотрите ОБРАЗЕЦ
№6
М8
Выходной контроль Выходной контроль
Выполните задание, выбрав в каждом случае нужный способ решения:
1 вариант:

2 вариант:
Закончив решение, ответы можете увидеть на слайде
М9Ребята! Вы хорошо потрудились, подведем итоги:
1.Назовите способы, которыми Вы решали уравнения.
2.Подумайте и скажите, какая самая типичная ошибка, по Вашему мнению, возможна при решении логарифмического неравенства.
3.Поставьте себе такое количество баллов, сколько заданий Вы выполнили в выходном контроле.
4.Сложите их с тем количеством правильных ответов, которое Вы получили в тестировании. Максимальное количество баллов – 25. Итоговая оценка будет на следующем занятии после проверки Ваших письменных работ.
5.Призовые баллы за успешную творческую работу получают… .М10
Рефлексия Выразите свои впечатления от занятия, назвав номер рисунка
2. 3. 4.
У меня все получилось! Мне было интересно Мне было трудно Я приду на консультацию
☺ ! ☹ ?
Материалы для промежуточного контроля
М2М3 М4
М6М5 М7
\s
ОБРАЗЕЦ №4
Метод логарифмирования

ОБРАЗЕЦ №5
Приведение логарифмов к одному основанию
Привести логарифмы к одному основанию можно различными способами


Более сложное уравнение:

ОБРАЗЕЦ №6
Решение логарифмических неравенств сложнее тем, что необходимо постоянно следить за знаком неравенства: менять или не менять. Ответ на этот вопрос дает свойство логарифмической функции (какое?). Не следует забывать и о допустимых значениях переменных.

2.log2(2x-3)<3
Неравенство такого типа удобно свести к предыдущему, т.е. к виду logaf(x)>logag(x). Т.к. 3=log28, то получается неравенство
log2(2x-3)< log28, а т.к. по основанию 2 логарифмическая функция является возрастающей, то знак неравенства не меняется. Получаем: