Доклад на тему влияние обобщающего повторения на качество знаний учащихся
Новобурасский филиал ГАПОУ СО
«Базарнокарабулакский техникум агробизнеса"
Влияние обобщающего повторения на качество знаний учащихся
Творческая работа преподавателя математики
Захаровой Н.М.
Содержание
1. Введение
2. Психолого–педагогические особенности подросткового периода
3. Значение повторения
4. Виды повторения
5. Заключение
6.Список используемой литературы
Введение.
В процессе обучения математике важное место отводится организации повторения изученного материала. Необходимость повторения обусловлена задачами обучения, требующими прочного и сознательного овладения ими.
Указывая на важность процесса повторения изученного материала, современные исследователи показали значительную роль при этом таких дидактических приёмов, как сравнение, классификация, анализ, синтез, обобщение, содействующее интенсивному протеканию процесса запоминания. При этом вырабатывается гибкость, подвижность ума, обобщённость знаний.
В процессе повторения память у учащихся развивается. Эмоциональная память опирается на наглядно–образные процессы, постепенно уступает памяти с логическими процессами мышления, которая основана на умении устанавливать связи между известными и неизвестными компонентами, сопоставлять абстрактный материал, классифицировать его, обосновывать свои высказывания.
Повторение учебного материала по математике осуществляется на этапе подготовки и изучения нового материала, при формировании учителем новых понятий, при закреплении изученного ранее, при организации самостоятельных работ, при проверке знаний учащихся.
Необходимость повторения изученного ранее материала вызвано самой структурой программы учебного курса математики. Школьная программа устроена так, что, не повторяя ранее изученного материала, трудно понять новый. Поэтому повторение пройденного материала необходимо учащимся. На практике чувствуется важность и полезность обобщающего повторения. Обобщающие уроки являются итогом большой работы учащихся по повторению, оказывают им практическую помощь в подготовке к экзаменам. Литературы по организации повторения не хватает. Важность обобщающего повторения и методических разработок определяют актуальность этой проблемы.
Проблема заключается в изучении влияния обобщающего повторения на качество знаний учащихся.
В связи с возникшей проблемой выдвигается гипотеза: предлагаемая методика обобщающего повторения способствует повышению качества знаний учащихся.
Психолого–педагогические особенности подросткового периода.
В настоящее время наблюдается усиленный интерес учителей математики к психолого–педагогическим проблемам, к психологическим знаниям. Этот интерес обусловлен тем, что учителя математики в своей повседневной практической деятельности встречаются с такими проблемами, которые можно разрешить лишь на основе психолого–педагогических знаний, а также при условии глубокого психологического осмысления сущности этих проблем.
В процессе обучения математике непосредственно участвуют с одной стороны учитель, с другой ученик. Роли их в этом процессе представляются, по крайней мере на первый взгляд, достаточно ясными: учитель организует, направляет и руководит процессом обучения математике, а ученик должен учиться, выполнять все требования учителя.
Вот как, например, определяется процесс обучения в одном из учебников по педагогике: “Обучением называется двусторонний процесс, состоящий из деятельности учителя, когда он ученикам объясняет, рассказывает, показывает, заставляет их выполнять упражнения, исправляет их ошибки и т.д., и из деятельности учеников, которые под руководством учителя усваивают знания и соответствующие умения и навыки”.
Основная роль учителя математики в современных условиях это воспитание личности учащихся, формирование их потребностно–мотивационной сферы, воспитание их способностей, нравственных идеалов и убеждений. Обучение знаниям умениям и навыкам по математике является составной частью этого воспитания и тем процессом, в котором это воспитание осуществляется.
О том, что надо учитывать возрастные особенности учащихся, говорится всюду, но не всегда указывается, что это означает, какие особенности надо учитывать и как их надо учитывать. Между тем, надо иметь в виду, что возрастные особенности это не нечто неизменное и вечное, что присуще ученикам определённого возраста. Сами эти особенности довольно резко меняются со временем. Скажем, возрастные психологические особенности ученика младшего школьного возраста теперь и лет 30 тому назад совсем не одни и те же. Точно также современный подросток весьма существенно отличается от подростка прошлых лет.
Рассмотрим некоторые психологические особенности современного ученика, имея в виду лишь те его особенности, которые важно учитывать в процессе обучения математике.
Ученик это растущий, развивающийся человек. Придя в школу в семь лет, он заканчивает её в 17 лет вполне сложившимся человеком юношеского возраста. За эти десять лет обучения ученик проходит огромный путь физического, психического и социально–нравственного развития.
Подростковый возраст это весьма сложный, таящий в себе опасность кризисных явлений, период в жизни ученика. В этот период организм ребёнка претерпевает кардинальные изменения. Развёртывается процесс полового созревания. С этим процессом связано возникновение у подростка физического ощущения собственной взрослости. У него возникает представление о себе уже не как о ребёнке, он стремится быть и считаться взрослым. Отсюда у подростка возникает новая жизненная позиция по отношению к себе, к окружающим людям, к миру. Он становится социально активным, восприимчивым к усвоению норм ценностей и способов поведения, которые существуют среди взрослых.
Поэтому период подросткового возраста характерен тем, что здесь начинается формирование морально–нравственных и социальных установок личности ученика, намечается общая направленность этой личности.
Подросток стремится к активному общению со своими сверстниками, и через это общение он активно познаёт самого себя, овладевает своим поведением, ориентируясь на образцы и идеалы, почерпнутые из книг, кинофильмов, телевидения.
Подросток становится более независимым от взрослых ещё и потому, что у него возникают такие потребности, которые он должен удовлетворить только сам (потребность в общении со сверстниками, в дружбе, в любви). Родители и вообще взрослые при всём их желании не могут решить проблемы, встающие перед подростками в связи с возникновением у них новых потребностей, между тем как удовлетворение всех основных потребностей младших школьников зависит в основном от родителей. Всё это зачастую болезненно сказывается на отношении учащихся к учению. Вот как характеризует это известный психолог Н.С. Лейтес: “Дети 12–13 лет в подавляющем большинстве своём относятся к учению в основном благодушно: не утруждают себя излишними раздумьями, выполняют только уроки в пределах заданного, часто находят поводы для развлечения Ослабление связи с учителем, снижение его влияния особенно дают о себе знать в недостатках поведения учеников на уроках. Теперь учащихся не только иногда позволяют себе игнорировать получаемые замечания, но могут и активно им противостоять. В средних классах можно столкнуться с изобретательными шалостями и проявлением самого легкомысленного поведения”.
Общая картина работы учащихся–подростков на уроках по сравнению с младшими классами ухудшается. Ранее примерные и аккуратные ученики позволяют себе не выполнять задания. Тетради ведутся неряшливо. У многих учащихся меняется подчерк, он становится неразборчивым и небрежным. При решении математических задач многие подростки не проявляют нужной настойчивости и прилежания. Попытки учителя заинтересовать учеников занимательностью формы изложения или какими–либо другими способами зачастую не приносят ожидаемого результата.
В то же время эти же подростки весьма охотно участвуют в работе различных кружков, где, казалось бы, наиболее трудные подростки охотно выполняют все указания взрослого руководителя кружка, с интересом и усердием овладевают теоретическими знаниями, нужными для выполнения практических работ.
В эти годы особую значимость для учеников приобретает ценностно–ориентационная деятельность. Ученик пытается произвести глубокую самооценку своей личности, своих способностей. Растёт и развивается познавательный интерес к философским проблемам, юноша пытается выяснить смысл жизни; оценить наблюдаемые явления с этой точки зрения.
Особо следует отметить стремление учеников старшего школьного возраста к автономии, к эмоциональной и ценностной самостоятельности, к независимости, к самоуважению, между тем как для подростков характерна зависимость от группы своих сверстников. Подросток весьма податлив влиянию сверстников. Внутренне отойдя от родителей, он ещё не пришёл к своей индивидуальности, которая обретается в юношеском возрасте. Если подростка волнует вопрос: “Неужели я не такой, как все?”, то юношу: “Неужели я такой, как все?”.
Учителю всё это надо иметь в виду и учитывать в своей работе.
Выше мы установили, что ученик в процессе обучения математике из объекта этого обучения постепенно становится его субъектом. Что это значит? В чём выражается различие между объектом и субъектом обучения? Ведь в том и в другом случае ученик как–то учится, приобретает знания, умения.
Действительно, и когда ученик является лишь объектом обучения математике, и когда он становится субъектом этого процесса он выполняет задания учителя, решает задачи, повторяет изученный материал и т.д., т.е. он учится. Все различия между учением ученика в роли объекта и его же учением в роли субъекта состоят в том, ради чего он это делает.
Человек, ученик есть деятельное существо. Он всегда что–то делает, участвует в какой–то деятельности. Но ученик участвует во многих различных деятельностях, совершает разные действия. Для того чтобы ученик эффективно учился, он должен совершать не любые действия, а вполне определённые. Встаёт вопрос: почему ученик совершает именно эти действия, а не другие, что побуждает совершать эти действия, что направляет и регулирует его деятельность в процессе обучения? Иными словами, что мотивирует побуждает и направляет деятельность ученика.
Только разобравшись в этом, мы сможем понять, в чём различия между объектом и субъектом процесса обучения. Кроме того, в этом надо разобраться ещё и потому, а может быть главным образом потому, что учитель должен научиться управлять деятельностью учащихся в процессе обучения, а для этого он должен формировать у них нужную мотивацию. Ведь в противном случае, если этого не делать, становится вполне реальной опасность, о которой говорил В.А.Сухомлинский:
“Все наши замыслы, все поиски и построения превращаются в прах, если нет у учащихся желания учиться.”
Поэтому учитель должен вызвать у учащихся такое желание, а это значит, что он должен формировать у них соответствующую мотивацию.
Значение повторения.
Одним из важнейших вопросов, способствующих дальнейшему повышению успеваемости, достижению глубоких и прочных знаний у учеников является вопрос о повторении ранее пройденного материала.
Без прочного сохранения приобретенных знаний, без умения воспроизвести в необходимый момент, ранее пройденный материал, изучение нового материала всегда будет сопряжено с большими трудностями и не дает надлежащего эффекта.
"Обучение нельзя довести до основательности без возможно более частых и особенно искусно поставленных повторений и упражнений", говорил Каменский.
Преподавать математику, не повторяя повседневно на каждом уроке ранее пройденный материал, это значит передать, пересказать учащимся определенную сумму различных законов, теорем, формул и т. п. , совершенно не заботясь о том, насколько прочно и сознательно освоили этот материал наши питомцы; это значит не дать детям глубоких и прочных знаний. Ранее пройденный материал должен служить фундаментом, на который опирается изучение нового материала, который в свою очередь, должен обогащать и расширять ранее изученные понятия.
Правильно организованное повторение помогает ученику увидеть в старом нечто новое; помогает установить логические связи между вновь изучаемым материалом и ранее изученным; обогащает память ученика; расширяет его кругозор; приводит знания ученика в систему; дисциплинирует ученика; приучает в нем уменье находить необходимого для ответа на поставленный вопрос материал; воспитывает в ученике чувство ответственности.
Повторение пройденного материала должно стать необходимейшим элементом в преподавании математики, органической и неотъемлемой частью каждого урока.
Виды повторения.
Различают следующие виды повторения ранее пройденного материала:
1. Повторение в начале учебного года.
2. Текущее повторение всего, ранее пройденного.
3. Tематичеcкoе повторение.
4. Заключительное повторение.
Первое требование к организации повторения, исходящее из его целей, это определение времени: когда повторять? Оно должно осуществляться по принципу: "Учить новое, повторяя, и повторять, изучая новое" (В. П.Вахтеров).
Это не означает, однако, что нельзя специально отводить уроки для повторения, скажем, для таких вопросов программы, которые трудно увязать с текущим материалом.
План повторения и выбор тем для повторения учитель должен составлять в каждом отдельном случае на основании общих теоретических соображений с учетом того, как усвоен учащимся материал соответствующих разделов.
К сказанному добавим еще то, что характер урока в связи с переходом учащихся из одного класса в другой значительно меняется. В старших классах существенно перестраивается закрепление и повторение учебного материала. Увеличивается объем фактического материалами, выносимого на закрепление и повторение; поурочное закрепление в ряде случаев переходит в тематическое или перерастает в обобщающее повторение, увеличивается доля самостоятельности учащихся при закреплении и повторении.
Второе требование к организации повторения должно отвечать на вопрос: Что повторять? Исходя из высказываний классиков педагогики, можно выдвинуть следующие положения при отборе учебного материала по различным видам повторения:
1. Не следует повторять все ранее пройденное. Нужно выбрать для повторения наиболее важные вопросы и понятия, вокруг которых группируется учебный материал.
2. Выделять для повторения такие темы и вопросы, которые по трудности своей недостаточно прочно усваиваются.
3. Выделять для повторения надо то, что необходимо обобщить, углубить и систематизировать.
4. Не следует повторять все в одинаковой степени. Повторять основательно надо главное и трудное. При отборе материала для повторения необходимо учитывать степень его связи с вновь изучаемым материалом.
Третье требование к организации повторения математики должно отвечать на вопрос: Как повторять? т. е. осветить те методы и приемы, которыми должно осуществляться повторение. Методы и приемы повторения должны находиться в тесной связи с видами повторения.
При повторении необходимо применять различные приемы и методы, сделать повторение интересным путём внесения, как в повторяемый материал, так и в методы изучения некоторых элементов новизны. Только разнообразие методов повторения может устранить те противоречие, которое возникает ввиду отсутствия желания у части учащихся повторять то, что ими усвоено однажды.
Различные виды повторения тесно взаимодействуют; от своевременного и успешного проведения одного из видов повторения, например, тематического или текущего, зависит продолжительность и успешность повторения другого вида заключительного повторения или повторения в конце года. Перейдём к краткой характеристике видов повторения.
1. Повторение пройденного в начале года.
При повторении в начале учебного года в первый план должно выдвигаться повторение тем, имеющих прямую связь с новым учебным материалом. Новые знания, приобретаемые на уроке, должны опираться на прочный фундамент уже усвоенных.
При повторении в начале года необходимо наряду с повторением тем, тесно связанных с новым материалом, повторить и другие разделы, которые пока не примыкают к вновь изучаемому материалу. Здесь необходимо сочетать обе задачи: провести общее повторение в порядке обзора основных вопросов из материала прошлых лет и более глубоко повторить вопросы, непосредственно связанные с очередным материалом по программе учебного года.
Само повторение следует проводить как в классе, так и дома. При решении вопроса, какой материал должен быть повторен в классе и какой оставлен учащимся для самостоятельного повторения дома, нужно исходить из особенности материала. Наиболее трудный материал повторили в классе, а менее трудный дали на дом для самостоятельной работы.
2. Текущее повторение пройденного.
Текущее повторение в процессе изучения нового материала весьма важный момент в системе повторения. Оно помогает устанавливать органическую связь между новым материалом и ранее пройденным.
Текущее повторение может осуществляться в связи с изучением нового материала. В этом случае повторяется материал, естественно увязывающийся с новым материалом. Повторение здесь входит составной и неотъемлемой частью во вновь изучаемый материал.
Под руководством учителя ученики на уроке воспроизводят ранее изученный ими необходимый материал. В результате этого доказательство новой теоремы воспринимается учащимися легко, а дальнейшая работа учителя воспроизведение доказанного и упражнения, обеспечивающие вторичное осмысление теоремы и её закрепление.
Во втором случае все связи с новым материалом, когда повторяемый материал не находит естественной увязки с новым и его приходится повторять на специальных уроках.
При текущем повторении вопросы и упражнения могут быть предложены учащимся из различных разделов программы.
Текущее повторение осуществляется в процессе разбора упражнений, включается в домашнее задание. Оно может быть проведено как в начале или в конце урока, так и во время опроса учащихся.
Текущее повторение дополняется сопутствующим повторением, которое нельзя строго планировать на большой период. Сопутствующее повторение не вносится в календарные планы, для него не выделяется специальное время, но оно является органической частью каждого урока. Сопутствующее повторение зависит от материала, привлекаемого для изучения очередного вопроса, от возможности установить связи между новым и старым, от состояния знаний учащихся в данный момент. Успех сопутствующего повторения в значительной степени обусловливается опытом и находчивостью учителя. Сопутствующим повторением учитель по ходу работы устраняет неточности в знаниях, напоминает вкратце давно пройденное, указывает их связь с новым.
3. Тематическое повторение.
В процессе работы над математическим материалом особенно большое значение приобретает повторение каждой законченной темы или целого раздела курса.
При тематическом повторении систематизируются знания учащихся по теме на завершающем этапе его прохождения или после некоторого перерыва.
Для тематического повторения выделяются специальные уроки, на которых концентрируется и обобщается материал одной какой-нибудь темы.
В процессе работы над темой вопросы, предлагаемые учащимся по каждому разделу, следует вновь пересмотреть; оставить наиболее существенные и отбросить более мелкие. Обобщающий характер вопросов при тематическом повторении отображается и на их количестве. Учителю приходится основной материал темы охватить в меньшем числе вопросов.
Повторение на уроке проводится путём беседы с широким вовлечением учащихся в эту беседу. После этого учащиеся получают задание повторить определённую тему и предупреждаются, что будет проведена контрольная работа.
Контрольная работа по теме должна включать все ее основные вопросы. После выполнения контрольной работы проводится разбор характерных ошибок и организуется повторение для их устранения.
4. Заключительное повторение.
Повторение, проводящееся на завершающем этапе изучения основных вопросов курса математики и осуществляемое в логической связи с изучением учебного материала по данному разделу или курсу в целом, будем называть заключительным повторением.
Класс, в котором было проведено обобщающее повторение, легко работает с материалом, быстро решает задачи, может ответить на любой дополнительный вопрос, пояснить, что и как решается, обосновать свой ответ.
Заключение
Прочное усвоение знаний является главной задачей процесса обучения, это очень сложный процесс. В него входят восприятие учебного материала, его запоминание и осмысливание, а также возможность использования этих знаний в различных условиях.
Преподавание математики не может стоять на должном уровне, а знания учащихся не будут достаточно полными и прочными, если в работе учителя отсутствует система повторительно-обобщающих уроков .
Повторение математики необходимо как для учащихся с целью углубления, упрочнены и систематизации своих знания, так и для самого учителя в чётности совершенствование методов обучения и поднятия эффективности своей работы.
Повторение математики должно систематически проводиться на уроках, органически сочетаясь с основным содержанием урока.
При сообщении нового материала одновременно надо повторять ранее изучаемый материал. Учащиеся должны чувствовать потребность к повторений. Это достигается тем, что при изучении нового материала учитель сравнивает его, сопоставляет со старым, устанавливает аналогии между ними, проводит обобщение, углубление и систематизацию.
Необходимо систематически практиковать текущее повторение. Необходимо и тематическое повторение по окончании темы, заключительное по окончании раздела, курса в целом, на котором устанавливаются более широкие логические связи между темами и разделами, подчеркиваются те основные и ведущие идеи, которые лежат в основе данной учебной дисциплины.
Для повышения интереса и активности учащихся при повторении необходимо применять различные приемы и методы работы, разнообразить повторяемый материал, старый материал рассмотреть с новых точек зрения, устанавливать все новые и новые логические связи, стимулировать самостоятельную работу учащихся.
Необходима хорошо продуманная теоретическая и практически обоснованная система повторения, которая должна обеспечить высокое качество и прочность знаний учащихся. Только в этом случае преподаватель достигает тех целей, которые он преследует повторением.
Повторение учебного материала требует от учителя творческой работы. Он должен обеспечить четкую связь между видами повторения, осуществить глубоко продуманную систему повторения.
Овладеть искусством организации повторения такова задача учителя, от её решения во многом зависит прочность знаний учащихся.
Список литературы
Басова Л.А., Шубин М.А., Эпштейн Л.А. Лекции и задачи по математике: из опыта работы летней физико–математической школы в Карелии. М.
Беляев Е.А., Киселёва Н.А., Перминов В.Я. Некоторые особенности развития математического знания. М.
Жуков Н.И. Философские проблемы математики. Минск
Кудрявцев Л.Д. Современная математика и её преподавание. М.
Методика преподавания математики в средней школе: Общая методика /Ю.М. Колягин и др. М. Просвещение
Методика преподавания математики. Составители: Р.С. Черкасов, А.А. Столяр.
Петров Ю.Н. Философские проблемы математики. М.
Поба Д. Математика и правдоподобные рассуждения. М.
Проверочные задания по математике для учащихся 5–8 и 10 классов средней школы. М. “Просвещение”
Реньи А. Диалоги о математике. М.
Славков С. Аспекты на математические познания. София.
Фёдоров И.Г. Некоторые методологические проблемы математики. М.
15