Решение задания для выпускного экзамена по алгебре и началам анализа (11-класс 17-задание) 
17-nji iş. Çep tarap
Hasaplaň:
12-1-20,2∙1-20,52-0,3  = 2+1(2-1)(2+1)-20,5(1-20,5)= 2+1- 2+2=3;Deňlemeler sistemasyny çözüň:
  y2-3xy+x2-x+y+9=0,y-x=2. => (x-2)2-(x-y)-xy+9=0,y-x=2. =>
=> 4+2-xy+9=0,y-x=2. => xy=15 ,y-x=2.  =>  x(x+2) = 15;  x2 + 2x = 15;
x2 + 2x + 1 = 16;    (x + 1)2 = 16;     x1,2 +1 = ± 4;   x1,2  = - 1± 4; => 
=> x1= - 5;  x2 = 3;  => y1= - 3;  y2 = 5;     Jogaby:  (-5; -3);  (3; 5);
Deňsizligi çözüň:
2log2x-3logx4-4≤0;      log2x = t;   2t – 6 ·1t – 4 ≤ 0; 
 2t2 – 6 - 4t ≤ 0;     2t2 +2t –6t - 6 ≤ 0;    (2t – 6)(t+1)≤ 0;  
( t – 3)( t + 1) ≤ 0 ;   t€[- 1; 3]; => x€[ 12 ; 8 ];          Jogaby:  x€[ 12 ; 8 ];
4. Arifmetik progressiýanyň birinji agzasy 213-e, tapawudy -29-ä deň. -1 şol progressiýanyň agzasy bolarmy?
Berlen:  a1= 213-e;   d = -29 ;    -1€{ak}-?   Goý,  ak = -2 bolsun.
-1 = a1+(k-1)d = 213-e + (k-1) · (-29 );     -1 = 73-e -29 (k-1) ;     
-9 = 21 – 9e – 2k + 2;     2k = 32 – 9e;    k = 16 - 92e  =>  bolup bilmez 
sebäbi e – irrasional san, k- bitin.     Jogaby: bolup bilmez
5. Eger cos2α=-35,  π<α<3π2 bolsa,  tg α- ny tapyň.
Çözülüşi:  2sin2a=1-cos2a=1--35 = 85 ;2cos2a=1+cos2a=1- 35= 25 ;tg2a = ( sinacosa )2 = 8525 = 4;     tg a = 2 ;    Jogaby:     tg a = 2 ;   
6. Berlen çyzyklar bilen çäklenen figuranyň meýdanyny hasaplaň:
3792129-2722
00
y=x2-4x,   y=0,  x=-32 ;  
S=- 32 0( y1(x) - y2(x))dx = 
- 32 0( x2-4x )dx = (  x33  - 2x2 ) │0-32  = 
= 0 + 13 · ( 32 )3 + 2 · (- 32 )2 =
=  98 + 92 = 9 · ( 18 + 48 ) = 458 ;                Jogaby:  458 ;
7. М (-1 ; 0 )  nokat arkaly y=2x-1  funksiýanyň grafigine geçirilen galtaşýan çyzygyň deňlemesini ýazyň.
F(x)= y0 + yˊ(x0)(x-x0) => yˊ(x0) = 12x0-1 ;  0 =2x0-1 + 12x0-1 (-1 - x0) =>
X0 = 2 ;  y0 = 3 ;  yˊ(x0) = 13 ; => F(x) = 3 + 13 (x-2) ;
Jogaby: F(x) = 3 + 13 (x-2) ; 
17-nji iş. Sag tarap
Hasaplaň:
30,9:30,41-30,5+21-3 = 30,9 · 1-30,530,4+2(1-3(1-3)(1-3) = 30,5 · 3 – 1 - 3 = - 4;
Deňlemeler sistemasyny çözüň:
x+y=3,x2+3xy+y2-x-y=2. => x+y=3,(x-y)2+xy-(x+y)=2. => 
=> x+y=3,xy=-4.  =>  x2+3x-4=0;  (x – 4)(x + 1) = 0;
x1 = - 1;   x2 = 4;  => y1 = 4;   y2 = - 4;       Jogaby:  (-1; 4);  (4; -1);
Deňsizligi çözüň:
2logx9-log3x-3≥0;      log3x = k;    2 · 2 · 1k – 3 ≥ 0; 
4 – k2 – 3k ≥ 0;      k2 + 3k – 4 ≥ 0;      (k+4)(k-1) ≤ 0;  => 
=> k€[ -4; 1];  => x€[  181; 3];         Jogaby:  x€[  181; 3];       
4. Arifmetik progressiýanyň birinji agzasy -212-e, tapawudy 34-e  deň. 3 şol progressiýanyň agzasy bolarmy?
Berlen:  a1= -213-e;   d = 34 =e ;    3€{ak}-?   Goý,  ak = 3 bolsun.
ak = a1+(k-1)d = 52-e + (k-1) · ( 34 -e);     3 = -  52-e + ( 34 -e)x+e- 34 ;    
 ( 34 -e)x = 134 + 3;     x = 134 + 334 -e  ∄Z;   => 3∄{ak} agzasy bolup bilmez.
   Jogaby: bolup bilmez
5. Eger sin 2α=35,   π2 <α< π   bolsa,  tg α- ny tapyň.
cos2a = 1-sin22a  = 1-925 = 45;   sin2a = 1-cos2a2=  1-452= 110;
  cos2a = 1+cos2a2 =  1+452= 910;  tg2a = sin2a cos2a = = 110 910 = 19; =>
=>  π2<α< π => tga = - 13;   Jogaby:  tga = - 13;   
3205705308958
00
6. Berlen çyzyklar bilen çäklenen figuranyň meýdanyny hasaplaň:
y=3x-x2,   y=0;   
S=0 3( y1(x) - y2(x))dx = 
0 3( 3x-x2 )dx = ( 3 x22  - x33 ) │30  = 
= 3 · 92 - 273 = 272 - 9 = 92 ;                                    Jogaby:  S = 92 ;
 7. М (2 ; 0 )  nokat arkaly y=1-x  funksiýanyň grafigine geçirilen galtaşýan çyzygyň deňlemesini ýazyň.
F(x)= y0 + yˊ(x0)(x-x0) => yˊ(x0) = -121-x0 ;  
0 =1-x0 +(-1)21-x0 (2 - x0) =>    0 = 21-x0-2+ x021-x0 ;     
      2 - 2x0-2+ x0=0 ;       x0 = 0 ;  y0 = 1-x0  = 1;   
   yˊ(x0) = -  12 ;  =>  F(x) = 1 - 12 x ;
      Jogaby: F(x) = 1 - 12 x ;