ЭЛЕКТИВНОГО КУРСА ПО ВЫБОРУ «РЕШЕНИЕ ТЕКСТОВЫХ ЗАДАЧ» ПО МАТЕМАТИКЕ ДЛЯ УЧАЩИХСЯ 9 КЛАССОВ
ЭЛЕКТИВНОГО КУРСА ПО ВЫБОРУ
«РЕШЕНИЕ ТЕКСТОВЫХ ЗАДАЧ» ПО МАТЕМАТИКЕ
ДЛЯ УЧАЩИХСЯ 9 КЛАССОВ
УЧИТЕЛЯ МАТЕМАТИКИ
ВЫСШЕЙ КВАЛИФИКАЦИОННОЙ КАТЕГОРИИ
МБОУ «СОШ №4 Г.МАМАДЫШ»
ГАЛОЧКИНОЙ ГУЛЬНАЗ МИРЗАЯНОВНЫ
Пояснительная записка
Итоговый письменный экзамен по алгебре за курс основной школы сдают все учащиеся 9 классов. С 2005 года в России появилась новая форма организации и проведения этого экзамена
Структура экзаменационной работы и организация проведения экзамена отличаются от традиционной системы аттестации, поэтому и подготовка к экзамену должна быть другой. В школах подготовка к экзаменам осуществляется на уроках, а также во внеурочное время: на факультативных и индивидуальных занятиях. Оптимальной формой подготовки к экзаменам являются элективные курсы, которые позволяют расширить и углубить изучаемый материал по школьному курсу.
Полный минимум знаний, необходимый для решения всех типов задач прикладного характера, формируется в течение первых восьми лет обучения учащихся в школе. Однако, статистические данные анализа результатов государственной итоговой аттестации за курс основной школы и ЕГЭ говорят о том, что решаемость текстовых задач составляет очень малый процент. Такая ситуация позволяет сделать вывод, что большинство учащихся не в полной мере владеет техникой решения текстовых задач и не умеет за их нетрадиционной формулировкой увидеть типовые задания, которые были достаточно хорошо отработаны на уроках в рамках школьной программы. По этой причине возникла необходимость более глубокого изучения этого раздела математики.
Необходимость рассмотрения техники решения текстовых задач обусловлена тем, что умение решать задачу является высшим этапом в познании математики и развитии учащихся. С помощью текстовой задачи формируются важные обще учебные умения решения, проверкой полученного результата и, наконец, развитием речи учащегося. В ходе решения текстовой задачи формируется умение переводить ее условие на математический язык уравнений, неравенств, их систем, графических образов, т.е. составлять математическую модель. Решение задач способствует развитию логического и образного мышления, повышает эффективность обучения математике и смежным дисциплинам.
Научить решать текстовые задачи – значит, научить такому подходу к задаче, при котором она выступает как объект тщательного изучения, а её решение – как объект математического моделирования. Умение производить процентные расчёты в настоящее время становится необходимым в силу неоднозначности в восприятии различных проблем, часто им необходимо дать оценку с точки зрения математических знаний. Прикладное значение этой темы затрагивает финансовую, демографическую, экологическую, социологическую и другие стороны нашей жизни. Предлагаемый курс демонстрирует учащимся применение математического аппарата к решению повседневных бытовых проблем каждого человека, вопросов рыночной экономики и задач технологии производства. Учебный материал курса будет способствовать успешному похождению аттестации учащихся за курс основной школы. Этот предметный курс дополняет базовую программу, не нарушая её целостности. Курс рассчитан на 17 часов.
Цели курса:
формирование понимания необходимости усвоения спектра текстовых задач, показав широту применения расчётов в реальной жизни;
развитие устойчивого интереса учащихся к изучению математики;
воспитание понимания, что математика является инструментом познания окружающего мира;
формирование коммуникативной компетентности;
осуществление интеллектуального развития учащихся, формирование качеств мышления, которые позволят им быть успешными на следующей ступени обучения, для решения практических проблем.
Задачи курса:
развивать систему ранее приобретённых программных знаний темы «Решение текстовых задач» до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, экономика, основы информатики и др.),
познакомить учащихся с разными типами текстовых задач, особенностями методики и различными способами их решения;
привить учащимся основы экономической грамотности;
создать условия, способствующие самоопределению учащихся;
развивать ключевые компетенции, обеспечивающие успешность в будущей профессиональной деятельности.
Требования к подготовке учащихся по результатам изучения элективного курса:
В результате изучения данного курса учащиеся должны:
знать:
основные методы и приёмы решения текстовой задачи;
классифицировать текстовые задачи и основные методы их решения;
особенности их решения;
знать применение текстовых задач в жизни, решать задачи на движение, работу, процентные расчёты, смеси и сплавы;
уметь:
определять тип текстовой задачи;
правильно употреблять термины, связанные с различными видами задач;
производить прикидку результатов вычислений;
применять полученные математические знания в решении жизненных задач;
при вычислениях сочетать устные и письменные приёмы, применять компьютерные технологии;
использовать приёмы, рационализирующие вычисления.
Ожидаемые результаты
После изучения курса учащиеся смогут:
определять тип текстовой задачи, знать особенности её решения, использовать при решении разные подходы;
самостоятельно производить процентные расчёты, а так же поделиться с одноклассниками своими знаниями.
применять математический аппарат к решению повседневных бытовых проблем каждого человека, вопросов рыночной экономики и задач технологии производства;
уметь использовать дополнительную математическую литературу.
Содержание занятий
Текстовые задачи и техника их применение
понятие текстовой задачи и ее виды;
этапы решения текстовой задачи;
арифметический и алгебраический способы решения текстовой задачи;
Задачи на движение.
движения навстречу друг другу;
движение в противоположных направлениях из одной точки;
движение в одном направлении;
движение по реке (движение по течению и против течения);
движение по кольцевым дорогам;
относительность движения;
чтение графиков движения;
Задачи на работу.
алгоритм решения задач на работу;
вычисление неизвестного времени работы;
путь, пройденный движущимися телами, рассматривается как совместная работа;
задачи на бассейн, заполняемый одновременно разными трубами;
задачи, в которых требуется определить объём выполняемой работы;
задачи, в которых требуется найти производительность труда;
задачи, в которых требуется определить время, затраченное на выполнение;
предусмотренного объёма работы;
система задач, подводящих к составной задаче.
Задачи на проценты.
типы задач на проценты;
процентные вычисления в жизненных ситуациях (распродажа, тарифы, штрафы, банковские операции, голосования).
Задачи на смеси и сплавы.
основные допущения при решении задач на смеси и сплавы;
задачи, связанные с понятием «концентрация», «процентное содержание», «переливание»;
способы решения задач на смеси и сплавы (арифметический, алгебраический, с помощью линейных уравнений и систем линейных уравнений);
объёмная концентрация;
процентное содержание.
6. Решение текстовых задач, предлагаемых в ходе ГИА и ЕГЭ.
Поурочно-тематическое планирование
№
урокаСодержание материала урока (разделы, темы) Кол-во часов Дата проведения
планфакт I. Текстовые задачи и техника их применения 1 1 Понятие текстовой задачи и ее виды. Этапы решения текстовой задачи. Арифметический и алгебраический способы решения текстовой задачи. 1 II. Задачи на движение 3 2
Решение задач на движения навстречу друг другу. Решение задач на движение в противоположных направлениях из одной точки. 1 3 Решение задач на движение по реке (движение по течению и против течения). 1 4 Решение задач на движение по кольцевым дорогам. Относительность движения. 1 III. Задачи на работу 4 5
Алгоритм решения задач на работу. Вычисление неизвестного времени работ. Решение задач на путь, пройденный движущимися телами, рассматривается как совместная работа 1 6 Решение задач на бассейн, заполняемый одновременно разными трубами. 1 7
Решение задач, в которых требуется определить объём выполняемой работы. Решение задач, в которых требуется найти производительность труда 1 8 Решение задач, в которых требуется определить время, затраченное на выполнение предусмотренного объёма работы 1 IV. Задачи на проценты 3 9 Решение типовых задач на проценты. 1 10 Процентные вычисления в жизненных ситуациях (распродажа, тарифы, штрафы) 1 11 Процентные вычисления в жизненных ситуациях (банковские операции, голосования) 1 V. Задачи на смеси и сплавы 3 12
Основные допущения при решении задач на смеси и сплавы. Решение задач, связанные с понятием «концентрация», «процентное содержание» (формулы) смеси и сплава. 1 13 Способы решения задач на смеси и сплавы (арифметический, алгебраический, с помощью линейных уравнений и систем линейных уравнений); 1 14 Решение задач на переливание.
Решение задач на процентное содержание смеси (сплава) 1 VI Решение текстовых задач, предлагаемых в ходе ГИА и ЕГЭ 3 15 Решение текстовых задач из второй части модуля «Алгебра» 1 16 Решение текстовых задач из второй части модуля «Алгебра» 1 17 Решение текстовых задач из второй части модуля «Алгебра» 1
Л И Т Е Р А Т У Р А
А.Н.Шевкин. Текстовые задачи в 5-9 классах. «Математика» (приложение к газете «Первое сентября»). №17-24,2005
О.Багишова. Читаем условие задачи. «Математика» (приложение к газете «Первое сентября»). №18,2006,№17,2009,№9,2002.
О.Огороднова. Учимся решать задачи на «смеси и сплавы». «Математика» (приложение к газете «Первое сентября»). №36,2004
Т.Шекунова. Задачи на движение. «Математика» (приложение к газете «Первое сентября»). №15,2000.
А.Е.Захарова. Учимся решать задачи на смеси и сплавы. Научно-практический журнал «Математика для школьников». №3,2006
Е.С.Канин. Текстовые (или сюжетные) задачи алгебры и их решение. Научно-практический журнал «Математика для школьников». №2, 2008.
А.Л.Семенов, И.В. Ященко. 3000 задач по математике. ОГЭ-2015.
ПРИЛОЖЕНИЕ.
Задачи на смеси, сплавы, концентрации.
Задача 1. Два одинаковых сосуда наполнены спиртом. Из первого сосуда отлили р литров спирта и налили в него столько же воды. Затем из полученной смеси воды со спиртом отлили р литров и налили столько же литров воды. Из второго сосуда отлили 2р литров спирта и налили столько же воды. Затем из полученной смеси отлили 2р литров и налили столько же воды. Определить, какую часть объема сосуда составляют р литров, если крепость окончательной смеси в первом сосуде в 25/16 раза больше крепости окончательной смеси во втором.
Задача 2. Из двух жидкостей, удельный вес которых 2 г/см3 и 3 г/см3 соответственно, составлена смесь. При этом 4 см3 смеси весят в 10 раз меньше, чем вся первая жидкость, а 50 см3 смеси весят столько же, сколько вся вторая жидкость, входящая в эту смесь. Сколько граммов взято каждой и каков удельный вес смеси?
Задача 3*. Имеются три смеси, составленные из трех элементов А, В, С. В первую смесь входят только А и В в весовом отношении 3:5, во вторую — только В и С в весовом отношении 1:2, а в третью — только А и С в отношении 2:3. В каком отношении нужно взять эти смеси, чтобы во вновь полученной смеси элементы А, В, С были в отношении 3:5:2?
Задача 4. Имеются два сплава из цинка, меди и олова. Первый содержит 25% цинка, второй — 50% меди. Процентное содержание олова в первом сплаве в два раза больше, чем во втором. Сплавив 200 кг первого и 300 кг второго, получили сплав, где 28% олова. Сколько кг меди в этом новом сплаве?
Задача 5*. В лаборатории есть раствор соли четырех различных концентраций. Если смешать первый, второй и третий растворы в весовом отношении 3:2:1, то получится 15%-ный раствор. Второй, третий и четвертый растворы в равной пропорции дают при смешении 24%-ный раствор, и, наконец, раствор, составленный из равных частей первого и третьего, имеет концентрацию 10%. Какая концентрация будет при смешении второго и четвертого растворов в пропорции 2:1?
Задача 6. Даны два сплава. Первый весит 4 кг и содержит 70% серебра. Второй весит 3 кг и содержит 90% серебра. Сколько кг второго сплава надо сплавить со всем первым сплавом, чтобы получить r%-ный сплав серебра? При каких r задача имеет решение?
Задача 7. От двух однородных кусков сплава с различным процентным содержанием меди, весящих соответственно т и п кг, отрезано по куску равного веса. Каждый из отрезанных кусков был сплавлен с остатком другого куска, после чего процентное содержание меди в получившихся сплавах стало одинаковым. Сколько весил каждый из отрезанных кусков?
Задача 8. В сосуд с чистой водой налили 6 литров 64%-ного (по объему) раствора спирта, а затем после полного перемешивания вылили равное количество (т.е. 6 литров) получившегося раствора. Сколько воды было первоначально в сосуде, если после троекратного повторения эти операции в сосуде получился 37%-ный раствор спирта?
Задача 9. Свежие фрукты содержат 72% воды, а сухие — 20%. Сколько сухих фруктов получится из 20 кг свежих фруктов?
Задачи на движение.
Задача 1. Если пароход и катер плывут по течению, то расстояние от А до В пароход покрывает в полтора раза быстрее, чем катер; при этом катер каждый час отстает от парохода на 8 км. Если они плывут против течения, то пароход идет от В до А в два раза быстрее (по времени, а не по скорости), чем катер. Найти скорости парохода и катера в стоячей воде.
Задача 2. Два туриста вышли из А в В одновременно, причем первый турист каждый километр пути проходит на 5 мин. быстрее второго. Первый, пройдя 1/5 часть пути, вернулся в А и, пробыв там 10 мин., снова пошел в В. При этом в В оба туриста пришли одновременно. Каково расстояние от А до В, если второй турист прошел его за 2,5 часа.
Задача 3. Пассажир, едущий из А в В, одну половину затраченного на путь времени ехал на автобусе, а вторую – на автомашине. Если бы он не ехал от А до В только на автобусе, то это заняло бы в полтора раза больше времени. Во сколько раз быстрее проходит путь от А до В машина, чем автобус?
Задача 4. Из А в В против течения выехала моторная лодка. В пути сломался мотор и пока его чинили 20 минут, лодку снесло вниз по реке. Насколько позднее прибыла лодка в В, если обычно из А в В она идет в полтора раза больше, чем из В в А?
Задача 5. Из А в В навстречу друг другу выехали одновременно два автобуса. Первый, имея вдвое большую скорость, проехал весь путь на 1 час быстрее 2-го. На сколько минут раньше произошла бы их встреча, если бы скорость 2-го увеличилась до скорости 1-го?
Задача 6. Два туриста вышли из А в В одновременно навстречу друг другу. Они встретились в 4 км от В. Достигнув А и В, туристы сразу повернули обратно и встретились в 2 км от А. Вторая встреча произошла через час после первой. Найти скорость туристов и расстояние от А до В.
Задача 7. Из А в С в 9 часов утра отправляется скорый поезд. В то же время из В, расположенного между А и С, выходят два пассажирских поезда, первый из которых идет в А, а второй – в С. Скорости пассажирских поездов равны. Скорый встречает первый пассажирский не позже, чем через три часа после отправления, потом приходит в пункт В не ранее 14 часов того же дня и, наконец, прибывает в С одновременно со 2-м пассажирским через 12 часов после встречи с 1-м пассажирским. Найти время прибытия в А первого пассажирского поезда.
Задача 8. Два тела движутся по окружности равномерно и в одну сторону. Первое тело проходит окружность на 2 секунды быстрее второго и догоняет второе тело каждые 12 секунд. За какое время каждое тело проходит окружность?
Задача 9. Из одной точки круговой трассы, длина которой равна 15 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 60 км/ч, скорость второго 80 км/ч. Сколько минут с момента старта пройдет, прежде чем первый автомобиль будет опережать второй ровно на 1 круг?
Задача 10. Из одной точки круговой трассы, длина которой равна 10 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 90 км/ч, и через 40 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.
Задача 11. Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой равна 20 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 12 км/ч больше скорости другого?
Задача 12. Часы с о стрелками показывают 9 часов 00 минут. Через сколько минут минутная стрелка в третий раз поравняется с часовой?
Задача 13. Лыжные соревнования проходят на круговой лыжне. Первый лыжник проходит один круг на 2 минуты быстрее второго и через час опережает второго ровно на один круг. За сколько минут второй лыжник проходит один круг?
Задача 14. Два тела движутся по окружности в одну сторону. Первое проходит круг на 3 минуты быстрее второго и догоняет второе каждые полтора часа. За сколько минут первое тело проходит один круг?
Задача 15. Две точки равномерно вращаются по окружности. Первая совершает оборот на 5 секунд быстрее второй и делает за минуту на 2 оборота больше, чем вторая. Сколько оборотов в минуту совершает вторая точка?
Задачи на работу и производительность.
Задача 1. В бассейн проведены три трубы. Первая и вторая вместе наполняют его на 5 ч. 20 минут быстрее, чем первая и третья вместе. Если бы вторая наливала, а третья выливала воду из бассейна, то он наполнился бы на 21/16 часа быстрее, чем бассейн вдвое большего объема первой и второй трубами вместе. За сколько времени первая и вторая труба наполнят бассейн, если первая и третья наполняют его более, чем за 8 часов?
Задача 2. Резервуар снабжается водой по пяти трубам. Первая наполняет его за 40 минут, вторая, третья и четвертая вместе – за 10 минут, вторая, третья и пятая – за 20 минут, пятая и четвертая – за 30 минут. За какое время его наполнят все пять труб вместе?
Задача 3. Несколько рабочих выполняют работу за 14 дней. Если бы их было на 4 человека больше и каждый работал в день на 1 час дольше, то та же работа была бы сделана за 10 дней. Если бы их было еще на 6 человек больше и каждый бы работал еще на 1 час больше, то эта работа была бы сделана за 7 дней. Сколько было рабочих и сколько часов в день они работали?
Задача 4. Три бригады, работая вместе, должны выполнить некоторую работу. Первая и вторая бригады вместе могут выполнить ее на 36 минут быстрее, чем одна третья. За то время, за которое могут выполнить эту работу первая и третья бригады, вторая может выполнить половину работы. За то время, что работу выполнят вторая и третья бригады, первая выполнит 2/7 работы. За какое время все три бригады выполнит эту работу?
Задача 5. На фабрике несколько одинаковых поточных линий вместе выпускали в день 15000 банок консервов. После реконструкции все поточные линии заменили на более производительные, а их количество увеличилось на 5. Фабрика стала выпускать 33792 банки в день. Сколько вначале было линий?
Задача 6. Три тракторные бригады вместе вспахивают поле за 4 дня. Это же поле первая и вторая бригады вместе вспахивают за 6 дней, а первая и третья вместе – за 8 дней. Во сколько раз больше площадь, вспахиваемая за день второй бригадой по сравнению с площадью, вспахиваемой за день третьей бригадой?
Задача 7. Две бригады землекопов вырыли по одинаковому котловану. Вторая бригада работала на полчаса больше первой. Если бы в первой бригаде было на 5 человек больше, то она могла бы закончить работу на 2 часа раньше. Определить число землекопов в каждой бригаде, если производительность у всех одинакова.
Задача 8. За время t первый рабочий сделал на 3 детали больше второго. Затем второй рабочий увеличил производительность труда на 0,2 детали в минуту и через некоторое целое число минут догнал и обогнал первого, работавшего с постоянной производительностью на 2 детали больше первого. Найти наибольшее возможное время t.
Задача 9. Двое рабочих вместе выполняют за час ¾ всей работы. Если первый рабочий выполнит ¼ всей работы, а второй, сменив его, выполнит ½ всей работы, то вместе они проработают 2,5 часа. За сколько часов каждый рабочий может выполнить всю работу, если за 1 час работы первого рабочего и за 0,5 часа работы второго рабочего будет выполнено больше половины работы?
Задачи на сложные проценты.
Задача 1. Сберкасса выплачивает 3 % годовых. Через сколько лет внесенная сумма удвоится?
Задача 2. Число 51,2 трижды увеличивали на одно и то же число процентов, а затем трижды уменьшали на тоже же самое число процентов. В результате получилось число 21,6. На сколько процентов увеличивали, а затем уменьшали это число?
Задача 3. Акционерное общество «МММ-лимитед» объявило котировку своих акций на ближайшие 3 месяца с приростом в процентах последовательно по месяцам на 243 %, 412 % и 629 % по отношению к каждому предыдущему месяцу. Каков ожидаемый средний ежемесячный рост котировок акций за указанный период?
Задача 4. Цена товара за последние три квартала возрастала соответственно на 25 %, 116 % и 629 % по отношению к каждому предыдущему кварталу. Каков средний ежеквартальный процент роста цены за это время?
Задача 5. Производительность труда на заводе трижды увеличивалась на одно и то же число процентов. В результате число производимых за сутки станков увеличилось с 64 до 125 штук. На сколько процентов каждый раз увеличивалась производительность труда?
Задача 6. Предприятие увеличивало объем выпускаемой продукции ежеквартально на одно и то же число %. На сколько % ежеквартально увеличился объем продукции, если за 2 квартала он увеличился на 156 %?
Задача 7. Себестоимость изделия понизилась за 1 полугодие на 10 %, а за второе – на 20 %. Определить первоначальную себестоимость изделия, если новая себестоимость стала 576 руб.
Задача 8. Вклад, положенный в сбербанк 2 года назад, достиг суммы, равной 1312,5 тыс. руб. Каков был первоначальный вклад при 25 % годовых?
Задача 9. Цена товара была понижена на 20 %. На сколько % ее нужно повысить, чтобы получить исходную цену?
Задача10. Петя вскапывает грядку один на минут дольше, чем он делает это вместе с Васей. Вася вскапывает ту же грядку на минут дольше, чем он это сделал бы вместе с Петей. За сколько минут вскапывают ту же грядку Вася и Петя вместе?
Задача 11. Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, делящееся на 11.
Задачи, часто встречающиеся на ЕГЭ.
Задача 1. Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути — со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.
Задача 2. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 98 км. На следующий день он отправился обратно со скоростью на 7 км/ч больше прежней. По дороге он сделал остановку на 7 часов. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.
Задача 3. Больному прописано лекарство, которое нужно пить по 0,5 г 3 раза в день в течение 21 дня. В одной упаковке 10 таблеток лекарства по 0,5 г. Какого наименьшего количества упаковок хватит на весь курс лечения?
Задача 4. В летнем лагере на каждого участника полагается 40 г сахара в день. В лагере 166 человек. Сколько килограммовых упаковок сахара понадобится на весь лагерь на 5 дней?
Задача 5. Моторная лодка прошла против течения реки 143 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.
Задача 6. Заказ на 156 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает первый рабочий, если известно, что он за час делает на 1 деталь больше?
Задача 7. Первая труба пропускает на 1 литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 110 литров она заполняет на 1 минуту дольше, чем вторая труба?
Задача 8. В 2008 году в городском квартале проживало 40000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 8%, а в 2010 году — на 9% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?
Задача 9. В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на 4% дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?
Задача 10. Четыре рубашки дешевле куртки на 8%. На сколько процентов пять рубашек дороже куртки?
Задача 11. В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?
Задача 12. Виноград содержит 90% влаги, а изюм — 5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма?
Задача 13. Первый сплав содержит 10% меди, второй — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Задача14. Рабочие прокладывают тоннель длиной 500 метров, ежедневно увеличивая норму прокладки на одно и то же число метров. Известно, что за первый день рабочие проложили 3 метра туннеля. Определите, сколько метров туннеля проложили рабочие в последний день, если вся работа была выполнена за 10 дней.
Задача 15. Бизнесмен Бубликов получил в 2000 году прибыль в размере 5000 рублей. Каждый следующий год его прибыль увеличивалась на 300% по сравнению с предыдущим годом. Сколько рублей заработал Бубликов за 2003 год?
Задачи для самостоятельных работ
-на смеси, сплавы и концентрации-
1) Из трех кусков сплавов меди и никеля с соотношением по массе этих металлов 2 : 1, 3 : 1, 5 : 1 получили новый сплав. Его масса оказалась равной 12 кг, а соотношение меди и никеля в нем составило 4:1. Найти массу каждого исходного куска, если первый весил вдвое больше второго.
2) Из трех кусков сплавов серебра и меди с соотношением масс этих металлов 3:2, 2:3, 1:4 получили новый сплав. Его масса оказалась равной 22 кг, а соотношение серебра и меди в нем составило 1:1. Найти массу каждого исходного куска, если второй весил вдвое больше третьего.
3) Из трех кусков сплавов олова и свинца с соотношением масс этих металлов 4 : 1, 1 : 1, 1 : 4 получили новый сплав. Его масса оказалась равной 24 кг, а соотношение олова и свинца в нем составило 2 : 3. Найти массу каждого исходного куска, если первый весил вдвое больше второго.
4) Имеются два сплава, в одном из которых содержится 20%, в другом 30% олова. Сколько нужно взять первого и второго сплава, чтобы получить 10 кг нового сплава, содержащего 27% олова?
5) Имеются два сплава, в одном из которых содержится 40%, а во втором 20% серебра. Сколько кг второго сплава нужно добавить к 20 кг первого, чтобы получить сплав, содержащий 32% серебра?
6) Имеется два куска металла массой 1 кг и 2 кг. Из этих кусков сделали два других: первый массой 0,5 кг, содержащий 40% меди, а второй массой 2,5 кг, содержащий 88% меди. Каково процентное содержание меди в исходных кусках?
7) Имеется два сосуда. В одном содержится три литра 100%-ной серной кислоты, а в другом два литра воды. Из первого сосуда во второй перелили один стакан кислоты, а затем из второго в первый – один стакан смеси. Эту операцию повторили еще два раза. В результате во втором сосуде образовалась 42%-ная кислота. Сколько серной кислоты в процентах содержится теперь в первом сосуде?
8) Свежие грибы содержат 92% воды, а сухие — 8%. Сколько сухих грибов получится из 24 кг свежих?
9) Какое максимальное количество 12%-го раствора кислоты можно получить, имея по 1 литру 5%-го, 10%-го и 15%-го раствора.
-на движение-
10) Пассажир, едущий из А в В, одну половину затраченного на путь времени ехал на автобусе, а вторую – на автомашине. Если бы он не ехал от А до В только на автобусе, то это заняло бы в полтора раза больше времени. Во сколько раз быстрее проходит путь от А до В машина, чем автобус?
11) Из А в В против течения выехала моторная лодка. В пути сломался мотор и пока его чинили 20 минут, лодку снесло вниз по реке. Насколько позднее прибыла лодка в В, если обычно из А в В она идет в полтора раза больше, чем из В в А?
12) Лыжные соревнования проходят на круговой лыжне. Первый лыжник проходит один круг на 2 минуты быстрее второго и через час опережает второго ровно на один круг. За сколько минут второй лыжник проходит один круг?
13) Два тела движутся по окружности в одну сторону. Первое проходит круг на 3 минуты быстрее второго и догоняет второе каждые полтора часа. За сколько минут первое тело проходит один круг?
14) Из одной точки круговой трассы, длина которой равна 15 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 60 км/ч, скорость второго 80 км/ч. Сколько минут с момента старта пройдет, прежде чем первый автомобиль будет опережать второй ровно на 1 круг?
-на работу и производительность-
15) Два экскаватора, работая одновременно, выполняют некоторый объем земляных работ за 3 ч 45 мин. Один экскаватор, работая отдельно, может выполнить этот объем работ на 4 ч быстрее, чем другой. Сколько времени требуется каждому экскаватору в отдельности для выполнения того же объема земляных работ?
16) Чтобы наполнить бассейн, сначала открыли одну трубу и через 2 ч, не закрывая её, открыли вторую. Через 4 ч совместной работы труб бассейн был наполнен. Одна вторая труба могла бы наполнить бассейн в 1,5 раза быстрее, чем одна первая. За сколько часов можно наполнить бассейн через каждую трубу?
17) Бригада слесарей может выполнить некоторое задание по обработке деталей на 15 ч быстрее, чем бригада учеников. Если бригада учеников отработает 18 ч, выполняя это задание, а потом бригада слесарей продолжит выполнение задания в течение 6 ч, то и тогда будет выполнено только 0,6 всего задания. Сколько времени требуется бригаде учеников для самостоятельного выполнения данного задания? Однотипные детали обрабатываются на двух станках. Производительность первого станка на 40% больше производительности второго. Сколько деталей было обработано за смену каждым станком, если первый работал в эту смену 6 ч, а второй – 7 ч, причем вместе они обработали 616 деталей?
18) Двое рабочих вместе могут выполнить некоторую работу за 10 дней. После семи дней совместной работы один из них был переведен на другой участок, а второй закончил работу, проработав еще 9 дней. За сколько дней каждый рабочий мог выполнить всю работу?
19) Две бригады колхозников должны закончить уборку урожая за 12 дней. После 8 дней совместной работы первая бригада получила другое задание, поэтому вторая закончила оставшуюся часть работы за 7 дней. За сколько дней могла бы убрать урожай каждая бригада, работая отдельно?