БИНОМ НЬЮТОНА И ТРЕУГОЛЬНИК ПАСКАЛЯ

Сегодня, как и лет тридцать-сорок назад, абитуриенты на вступительных экзаменах в вуз традиционно опасаются вытянуть билет с вопросом о биноме Ньютона. (Автор формулы великий английский физик, математик, астроном и философ сэр Исаак Ньютон.) Дело не только в том, что формула кажется сложной. Изучение её то включали в программу средней школы, то выводили за рамки основного курса, но в серьёзных вузах экзаменаторы спрашивали и продолжают спрашивать о биноме Ньютона.
На самом деле бояться тут особенно нечего. Бином Ньютона формула разложения произвольной натуральной степени двучлена (а+b)n в многочлен. Каждый из нас знает наизусть формулы «квадрата суммы» (а+b)2 и «куба суммы» (а+b)3, но при увеличении показателя степени с определением коэффициентов при членах многочлена начинаются трудности. Чтобы не совершить ошибку и применяется формула бинома Ньютона:
[ Cкачайте файл, чтобы посмотреть картинку ]
В более общем виде формула коэффициентов в биноме записывается так:
[ Cкачайте файл, чтобы посмотреть картинку ]
где k - порядковый номер слагаемого в многочлене.
Напомним, что факториал произведение натуральных чисел от 1 до n, то есть 1х2хЗх...хn обозначается n!, например, 4!=1x2x3x4=24.
Запомнить формулу действительно непросто. Но попытаемся её проанализировать. Видно, что в любом многочлене присутствуют an и bn с коэффициентами 1. Ясно также, что всякий иной член многочлена выглядит как произведение определённых степеней каждого из слагаемых двучлена (a+b), причём сумма степеней всегда равна n. Например, в выражении (a+b)3=a3+3a2b+3ab2+b3 сумма степеней сомножителей во всех членах равна трём (3, 2+1, 1+2, 3). То же самое справедливо и для любой другой степени. Вопрос лишь в том, какие коэффициенты следует ставить при членах.
Видимо, для того чтобы облегчить труд школяров и студентов, великий французский математик и физик Блез Паскаль триста пятьдесят лет назад придумал специальный инструмент для определения этих самых коэффициентов «треугольник Паскаля».
Строится он следующим образом.В вершине треугольника пишем 1. Единица соответствует выражению (a+b)0, поскольку любое число, возведённое в нулевую степень, даёт единицу. Достраивая треугольник, ниже пишем ещё по единице. Это коэффициенты разложения того же двучлена, возведённого в первую степень: (a+b)1=a+b. Идём дальше. Стороны треугольника образуют единицы, а между ними сумма двух единичек, находящихся сверху, то есть 2. Это и есть коэффициенты трёхчлена «квадрат суммы»:
a2+2ab+b2.
Следующий ряд, как и предыдущий, начинается и заканчивается единицами, а между ними суммы цифр, находящихся сверху: 1, 3, 3, 1. Мы получили коэффициенты разложения « куба суммы ». Ряд коэффициентов двучлена четвёртой степени составят 1, 4, 6, 4, 1 и так далее.
Для примера с помощью треугольника Паскаля разложим в многочлен сумму двучленов в шестой степени:
(a + b)6=a6+6a5b + 15a4b2+20a3b3 + 15a2b4+6ab5+b6.
Всё очень несложно и запоминается на всю жизнь. Кстати, самостоятельно вспомнить и вывести формулу бинома Ньютона, нарисовав на черновике треугольник Паскаля, тоже намного проще.
Некоторые историки науки приписывают Блезу Паскалю авторство не только треугольника, позволяющего находить биномиальные коэффициенты, но и самой формулы бинома. Они считают, что Паскаль вывел её несколько раньше Ньютона, а тот лишь обобщил формулу для разных показателей степеней.

15