Задачи для групповой работы по теме Задачи на движение
1-ый ряд: 1) Расстояние между двумя городами 900 км. Два поезда вышли из этих городов навстречу друг другу со скоростями 70 км/ч и 80 км/ч. На каком расстоянии друг от друга были поезда за 1 ч до встречи? Есть ли в задаче лишнее условие?
7. Расстояние между городами А и В равно 720 км. Из А в В вышел скорый поезд со скоростью 80 км/ч. Через 2 ч навстречу ему из В в А вышел пассажирский поезд со скоростью 60 км/ч. Через сколько часов после выхода скорого поезда они встретятся?
2-ой ряд: 2) Расстояние от села до города 45 км. Из села в город вышел пешеход со скоростью 5 км/ч. Через час навстречу ему из города в село выехал велосипедист со скоростью 15 км/ч. Кто их них в момент встречи будет ближе к селу?
3-ий ряд: 3) Два велосипедиста выехали одновременно навстречу друг другу из двух сел, расстояние между которыми 54 км. Скорость первого 12 км/ч, второго 15 км/ч. Через сколько часов они будут находиться друг от друга на расстоянии 27 км?
Расстояние между городами А и В равно 490 км. Из города А в город В со скоростью 55 км/ч выехал первый автомобиль, а через час после этого навстречу ему из города В выехал со скоростью 90 км/ч второй автомобиль. На каком расстоянии от города А автомобили встретятся?
Задание 22 № 311601Решение.
За первый час пути автомобиль, выехавший из города А, проехал 55 километров и расстояние от него до города В стало равным 435 км. Далее, скорость сближения двух автомобилей равна 145 км/ч, значит, они встретятся через 3 часа после выезда второго автомобиля. Таким образом, первый автомобиль до встречи находился в пути 4 часов, и проехал за это время 220 километров.
Ответ: 220 км.
Источник: ГИА-2013. Математика. Пробные варианты от ФИПИ (2 вар.)
Железнодорожный состав длиной в 1 км прошёл бы мимо столба за 1 мин., а через туннель (от входа локомотива до выхода последнего вагона) при той же скорости — за 3 мин. Какова длина туннеля (в км)?
Задание 22 № 311615Решение.
Поезд проходит через туннель за 3 минуты, при этом за одну минуту поезд проходит мимо выхода из туннеля, следовательно, от входа локомотива в туннель до выхода проходит 2 минуты. Мимо столба поезд длиной 1 км проходит за 1 минуту, поэтому его скорость равна 1 км/мин. Значит, за 2 минуты поезд пройдет 2 км, поэтому длина туннеля равна 2 км.
Ответ: 2.
Источник: ГИА-2012. Математика. Диагностическая работа №1 (4 вар)
Поезд, двигаясь равномерно со скоростью 63 км/ч, проезжает мимо идущего в том же направлении параллельно путям со скоростью 3 км/ч пешехода за 57 секунд. Найдите длину поезда в метрах.
Задание 22 № 333023Решение.
Пусть длина поезда l м . Скорость поезда относительно пешеход равна 63-3=60 км/ч, или м/с. Следовательно, поезд проезжает мимо идущего в том же направлении параллельно путям пешехода за l : секунд.
Составим и решим уравнение:
; .
Длина поезда составляет 950 м.
Ответ: 950 м.
Аналоги к заданию № 333023: 338854 353306 341283 341288
Источник: МИОО: Диагностическая работа по математике 17.04.2014 вариант МА90601
Поезд, двигаясь равномерно со скоростью 57 км/ч, проезжает мимо идущего в том же направлении параллельно путям со скоростью 5 км/ч пешехода за 45 секунд. Найдите длину поезда в метрах.
Задание 22 № 333102Решение.
Пусть длина поезда l м. Скорость поезда относительно пешехода равна км/ч, или м/c. Следовательно, поезд проезжает мимо идущего в том же направлении параллельно путям пешехода за l: секунд.
Составим и решим уравнение: ; . Длина поезда составляет 650 м.
Ответ: 650 м.
Аналоги к заданию № 333102: 333128 333155 338998 353577
Источник: МИОО: Диагностическая работа по математике 17.04.2014 вариант МА90602
Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 30 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 144 км, скорость первого велосипедиста равна 24 км/ч, скорость второго — 28 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
Задание 22 № 333319Решение.
За то время, пока первый велосипедист делал остановку, второй велосипедист проехал . Всё остальное время они одновременно находились в пути, значит, второй велосипедист за это время проехал Таким образом, суммарно он проехал 84 км.
Ответ: 84 км.
Аналоги к заданию № 333319: 333345 353582Источник: МИОО: Тренировочная работа по математике 06.05.2014 вариант МА90701.
Спрятать решение
Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 4 км от места отправления. Один идёт со скоростью 2,7 км/ч, а другой — со скоростью 4,5 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?
Задание 22 № 339056Решение.
Второй человек придёт на опушку через часа. За это время первый пройдёт км, следовательно, до опушки ему останется пройти 4 − 2,4 = 1,6 км. Теперь второй путник идёт навстречу первому и их встреча произойдёт через часа. За это время первый человек успеет пройти ещё км. Таким образом, он пройдёт от точки отправления 2,4 + 0,6 = 3 км.
Ответ: 3.
Аналоги к заданию № 339056: 341024Спрятать решение
Поезд, двигаясь равномерно со скоростью 86 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 6 км/ч, за 18 секунд. Найдите длину поезда в метрах.
Задание 22 № 341283Решение.
Скорость сближения пешехода и поезда равна 86 − 6 = 80 км/ч. Заметим, что 1 м/c равен 3,6 км/ч. Значит, длина поезда в метрах равна
Ответ: 400 м.
Спрятать решение
Помощь по заданию Сообщить об ошибке31
Поезд, двигаясь равномерно со скоростью 44 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 4 км/ч, за 81 секунду. Найдите длину поезда в метрах.
Задание 22 № 341288Решение.
Скорость сближения пешехода и поезда равна 44 − 4 = 40 км/ч. Заметим, что 1 м/c равен 3,6 км/ч. Значит, длина поезда в метрах равна
Ответ: 900 м.
Решение: 1) 45 – 40 = 5 (верст/день) – скорость сближения;
2) 40 : 5 = 8 (дней)
Ответ: через 8 дней второй юноша догонит первого.