Рабочая программа по учебной дисциплине ОУД.03 Математика: алгебра и начала математического анализа геометрия






РАБОЧАЯ ПРОГРАММА
учебной дисциплины
ОУД.03 Математика: алгебра и начала
математического анализа, геометрия

для специальности 21.02.03 Сооружение и эксплуатация газонефтепроводов и газонефтехранилищ


Квалификация:
техник
Нормативный срок обучения – 3 года 10 мес.
на базе основного общего образования



Разработчик:
Птичкина С.И., преподаватель







Канаш 2016г.
Программа учебной дисциплины разработана на основании примерной программы учебной общеобразовательной дисциплины «Математика: алгебра и начала математического анализа, геометрия», рекомендованной Федеральным государственным автономным учреждением «Федеральный институт развития образования» (ФГАУ «ФИРО») в качестве примерной программы для реализации основной профессиональной образовательной программы СПО на базе основного общего образования с получением среднего общего образования протокол № 3 от 21 июля 2015 г.
Регистрационный номер рецензии 377 от 23 июля 2015 г. ФГАУ «ФИРО»

Организация – разработчик: Государственное автономное профессиональное образовательное учреждение Чувашской Республики «Канашский транспортно-энергетический техникум» Министерства образования и молодежной политики Чувашской Республики.

Разработчик: Птичкина С.И., преподаватель ГАПОУ «КанТЭТ» Минобразования Чувашии.



























СОДЕРЖАНИЕ


стр.

ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ
4

СТРУКТУРА и содержание УЧЕБНОЙ ДИСЦИПЛИНЫ
7

условия реализации учебной дисциплины
19

Контроль и оценка результатов Освоения учебной дисциплины

20



1. паспорт Рабочей ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ
МАТЕМАТИКА
1.1.  Область применения программы:
Рабочая программа учебной дисциплины является частью основной профессиональной образовательной программы по программе подготовки специалистов среднего звена в соответствии с ФГОС по специальности СПО 21.02.03 Сооружение и эксплуатация газонефтепроводов и газонефтехранилищ.

Место дисциплины в структуре основной профессиональной образовательной программы:
профильные общеобразовательные дисциплины

Цели и задачи учебной дисциплины – требования к результатам освоения
дисциплины:
обеспечение сформированности представлений о социальных, культурных и исторических факторах становления математики;
обеспечение сформированности логического, алгоритмического и математического мышления;
обеспечение сформированности умений применять полученные знания при решении различных задач;
обеспечение сформированности представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления.
В программу включено содержание, направленное на формирование у студентов компетенций, необходимых для качественного освоения ОПОП СПО на базе основного общего образования с получением среднего общего образования.
Освоение содержания учебной дисциплины «Математика» обеспечивает достижение
студентами следующих результатов:
личностных:

·
· сформированность представлений о математике как универсальном языке науки,
средстве моделирования явлений и процессов, идеях и методах математики;

·
· понимание значимости математики для научно-технического прогресса, сформированность отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей;

·
· развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей
профессиональной деятельности, для продолжения образования и самообразования;

·
· овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для освоения смежных естественно-научных дисциплин и дисциплин профессионального цикла, для получения образования в областях, не требующих углубленной математической подготовки;

·
· готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

·
· готовность и способность к самостоятельной творческой и ответственной деятельности;

·
· готовность к коллективной работе, сотрудничеству со сверстниками в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;

·
· отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;

метапредметных:

·
· умение самостоятельно определять цели деятельности и составлять планыдеятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;

·
· умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;

·
· владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;

·
· готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;

·
· владение языковыми средствами: умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;

·
· владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств для их достижения;

·
· целеустремленность в поисках и принятии решений, сообразительность и интуиция, развитость пространственных представлений; способность воспринимать красоту и гармонию мира;
предметных:

·
· сформированность представлений о математике как части мировой культуры и месте математики в современной цивилизации, способах описания явлений реального мира на математическом языке;

·
· сформированность представлений о математических понятиях как важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;

·
· владение методами доказательств и алгоритмов решения, умение их применять, проводить доказательные рассуждения в ходе решения задач;

·
· владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;

·
· сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей;

·
· владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать геометрические фигуры на чертежах, моделях и в реальном мире; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;

·
· сформированность представлений о процессах и явлениях, имеющих вероятностный характер, статистических закономерностях в реальном мире, основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;

·
· владение навыками использования готовых компьютерных программ при решении задач.


1.4. Количество часов на освоение программы дисциплины:
максимальной учебной нагрузки обучающегося 351 часов, в том числе:
обязательной аудиторной учебной нагрузки обучающегося 234 часа;
самостоятельной работы обучающегося 117 часов.




































2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ
Математика: алгебра и начала математического анализа, геометрия
2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы
Количество часов

Максимальная учебная нагрузка (всего)
351

Обязательная аудиторная учебная нагрузка (всего)
234

в том числе:


практические работы
163

контрольные работы
11

Самостоятельная работа обучающегося (всего)
в том числе:
работа с учебной и справочной литературой
Подготовка доклада
созданий презентаций
выполнение рефератов
создание моделей многогранников и круглых тел
решение вариативных задач
выполнение тестовой работы
117

Промежуточная аттестация в форме письменного экзамена


2.2. Тематический план и содержание учебной дисциплины «Математика: алгебра и начала математического анализа, геометрия»
Наименование разделов и тем
Содержание учебного материала, лабораторные работы и практические занятия, самостоятельная работа обучающихся
Объем часов
Уровень освоения

Введение
Содержание учебного материала
1



Математика в науке, технике, экономике, информационных технологиях и практической деятельности. Цели и задачи изучения математики в учреждениях среднего профессионального образования

1

Раздел 1. Развитие понятия о числе.
15


Тема 1.1 Развитие понятия о числе
,
Содержание учебного материала
1



Целые и рациональные числа. Действительные числа.
Приближенные вычисления.

2


Практические занятия
4
2


Арифметические действия над числами.
Приближенные вычисления. Погрешности вычислений.
Сравнение числовых выражений.




Самостоятельная работа обучающихся
2



Работа со справочной литературой по теме: «Признаки делимости чисел».
Подготовка доклада «Непрерывные дроби».



Тема 1.2. Комплексные числа
Содержание учебного материала
1



Комплексные числа. Геометрическая интерпретация комплексного числа.

2
33332
222


Практические занятия
4



Арифметические операции над комплексными числами.
Запись комплексных чисел в тригонометрической форме.
Решение уравнений в комплексных числах.




Самостоятельная работа обучающихся
3



Создание презентации «Комплексные числа»
Работа со справочной литературой по теме «Показательная форма комплексного числа».



Раздел 2. Корни, степени, логарифмы.
42


Тема 2.1. Корень n-ой степени




Содержание учебного материала
1




Корни и степени. Корни натуральной степени из числа и их свойства.

2


Практические занятия
2



Вычисление и сравнение корней.
Выполнение расчетов с радикалами.





Самостоятельная работа обучающихся
2



Тема 2.2. Степень с действительным показателем
Содержание учебного материала
1


2



Степени с рациональными показателями, их свойства. Степени с действительными показателями. Свойства степени с действительным показателям.




Практические занятия
7
2


Решение иррациональных уравнений.
Нахождение значений степеней с рациональными показателями.
Сравнение степеней.
Преобразования выражений, содержащих степени.
Решение показательных уравнений.
Решение прикладных задач.
Применение сложных процентов в экономических расчетах.




Контрольная работа №1. Корни и степени.
1
3


Самостоятельная работа обучающихся
3



Решение вариативных задач по теме «Сравнение степеней»
Изучение темы «Сложные проценты»



Тема 2.3. Логарифм и его свойства
Содержание учебного материала
2

2


Логарифм числа. Основное логарифмическое тождество. Десятичные и натуральные логарифмы.
Правила действий с логарифмами. Переход к новому основанию.




Практические занятия
8



Нахождение значений логарифма по произвольному основанию.
Переход от одного основания к другому.
Вычисление и сравнение логарифмов.
Логарифмирование и потенцирование выражений. Приближенные вычисления и решения прикладных задач. Решение логарифмических уравнений.




Самостоятельная работа обучающихся
5




Подготовка реферата по теме «Сравнение логарифмов».
Подготовка презентации по теме «Логарифмы».



Тема 2.4 Преобразование алгебраических выражений.





Содержание учебного материала
1



Преобразование рациональных, иррациональных, степенных выражений. Преобразование показательных и логарифмических выражений.

2


Практические занятия
4





Преобразование рациональных, иррациональных, степенных выражений. Преобразование показательных и логарифмических выражений.




Контрольная работа №2. Показательные, логарифмические и степенные функции.
1
3


Самостоятельная работа обучающихся
4



Преобразование показательных и логарифмических выражений.
Решение показательных уравнений.



Раздел 3. Прямые и плоскости в пространстве.
30


Тема 3.1. Параллельность в пространстве
Содержание учебного материала
2



Взаимное расположение двух прямых в пространстве.
Параллельность прямой и плоскости.
Параллельность плоскостей.

2


Практические занятия
5



Параллельные и перпендикулярные прямые.
Взаимное расположение прямой и плоскости.
Взаимное расположение плоскостей.
Решение задач.




Самостоятельная работа обучающихся
3



Создание презентации «Параллельность в пространстве»



Тема 3.2. Перпендикулярность в пространстве
Содержание учебного материала
4




Перпендикулярность прямой и плоскости. Перпендикуляр и наклонная.
Угол между прямой и плоскостью. Двугранный угол. Угол между плоскостями. Перпендикулярность двух плоскостей.
Геометрические преобразования пространства: параллельный перенос, симметрия относительно плоскости. Параллельное проектирование. Площадь ортогональной проекции. Изображение пространственных фигур.

2


Практические занятия
8



Признаки взаимного расположения прямых. Угол между прямыми.
Взаимное расположение прямых и плоскостей. Перпендикуляр и наклонная к плоскости. Угол между прямой и плоскостью.
Теоремы о взаимном расположении прямой и плоскости. Теорема о трех перпендикулярах. Признаки и свойства параллельных и перпендикулярных плоскостей. Расстояние от точки до плоскости, от прямой до плоскости, расстояние между плоскостями, между скрещивающимися прямыми, между произвольными фигурами в пространстве. Параллельное проектирование и его свойства. Теорема о площади ортогональной проекции многоугольника




Контрольная работа №3. Параллельность и перпендикулярность в пространстве.
1
3


Самостоятельная работа обучающихся
7



Изготовление демонстрационной модели к теореме о трех перпендикулярах.
Изготовление модели двугранного угла.
Подготовка реферата по теме «Параллельное проектирование».
Подготовка реферата по теме «Ортогональное проектирование».
Создание презентации «Перпендикулярность в пространстве»



Раздел 4. Элементы комбинаторики.
14


Тема 4.1. Элементы комбинаторики
Содержание учебного материала
3



Основные понятия комбинаторики. Задачи на подсчет числа размещений, перестановок, сочетаний.
Решение задач на перебор вариантов.
Формула бинома Ньютона. Треугольник Паскаля. Свойства биноминальных коэффициентов.

2


Практические занятия
7



История развития комбинаторики, теории вероятностей и статистики и их роль в различных сферах человеческой жизнедеятельности.
Правила комбинаторики.
Решение комбинаторных задач.
Размещения, сочетания и перестановки.
Бином Ньютона и треугольник Паскаля.
Прикладные задачи.




Самостоятельная работа обучающихся
4



Работа с дополнительной литературой по теме: «Сочетания с повторениями».
Подготовка доклада по теме «Бином Ньютона»



Раздел 5. Координаты и векторы.
24


Тема 5.1. Векторы в пространстве
Содержание учебного материала
5



Декартова система координат в пространстве.
Векторы. Модуль вектора. Равенство векторов. Сложение векторов. Умножение вектора на число.
Проекция вектора на ось. Разложение вектора по направлениям.
Определение угла между двумя векторами.
Скалярное произведение векторов.

2


Практические занятия
10



Декартова система координат в пространстве.
Векторы. Действия с векторами.
Уравнение окружности, сферы, плоскости.
Расстояние между точками.
Действия с векторами, заданными координатами.
Скалярное произведение векторов.
Векторное уравнение прямой и плоскости.
Использование векторов при доказательстве теорем стереометрии.
Использование координат и векторов при решении математических и прикладных задач.




Контрольная работа №4. Параллельность и перпендикулярность в пространстве.
1
3


Самостоятельная работа обучающихся
7



Работа с учебной литературой по темам: «Сумма нескольких векторов». «Правило параллелепипеда»,
Создание презентации по теме «Векторное задание прямых и плоскостей в пространстве».
Изучить темы «Векторное произведение векторов», «Коллинеарные векторы», «Компланарные векторы».



Раздел 6. Основы тригонометрии.
42


Тема 6.1 Основные понятия
Содержание учебного материала
2




Радианная мера угла. Вращательное движение.
Синус, косинус, тангенс и котангенс числа.

2













3


Практические занятия
2



Радианный метод измерения углов вращения и связь с градусной мерой.
b° Синус, косинус, тангенс и котангенс числа.




Самостоятельная работа обучающихся
1



Решение вариативных задач



Тема 6.2 Основные тригонометрические тождества.











Содержание учебного материала
2



Формулы приведения.
Формулы сложения. Формулы удвоения. Формулы половинного угла.

2


Практические занятия
7



Основные тригонометрические тождества.
Применение формул приведения.
Применение формул сложения.
Применение формул двойного угла
Применение формул половинного аргумента.




Самостоятельная работа обучающихся
3




Выполнение реферата по теме «Формулы универсальной подготовки».



Тема 6.3 Преобразования простейших тригонометрических выражений
Содержание учебного материала
1



Преобразование суммы тригонометрических функций в произведение и произведения в сумму.
Выражение тригонометрических функций через тангенс половинного аргумента.

2



Практические занятия
3



Преобразование суммы тригонометрических функций в произведение.
Преобразование произведения тригонометрических функций в сумму.




Контрольная работа №5. Основы тригонометрии.
1
3


Самостоятельная работа обучающихся
2



Решение вариативных задач



Тема 6.4 Тригонометрические уравнения и неравенства


Содержание учебного материала
3



Обратные тригонометрические функции. Арксинус, арккосинус, арктангенс.
Простейшие тригонометрические уравнения.
Простейшие тригонометрические неравенства.

2


Практические занятия
9



Решение простейших тригонометрических уравнений.
Решение тригонометрических уравнений разложением на множители.
Решение однородных тригонометрических уравнений.
Решение тригонометрических уравнений, используя формулы понижения степеней.
Введение вспомогательного переменного.
Решение простейших тригонометрических неравенств.
Решение тригонометрических неравенств.




Контрольная работа №6. Тригонометрические уравнения и неравенства.
1
3


Самостоятельная работа обучающихся
5




Выполнение реферат по теме «Тригонометрические уравнения и неравенства»
Подготовка презентации «Тригонометрия»




Раздел 7. Функции и графики.
30



Тема 7.1 Функции, их свойства и графики.



















Содержание учебного материала
4




Функции. Область определения и множество значений; график функции, построение графиков функций, заданных различными способами.
Свойства функции: монотонность, четность, нечетность, ограниченность, периодичность.
Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.
Обратные функции. Область определения и область значений обратной функции. График обратной функции. Арифметические операции над функциями. Сложная функция.

2



Практические занятия
5




Примеры зависимостей между переменными в реальных процессах из смежных дисциплин. Определение функций.
Построение и чтение графиков функций.
Исследование функции.
Свойства линейной, квадратичной, кусочно-линейной и дробно-линейной функций.
Непрерывные и периодические функции.





Самостоятельная работа обучающихся
5




Выполнение реферата «Дробно-линейная функция»
Выполнение реферата «Непрерывность функции»










Тема 7.2 Степенные, показательные, логарифмические и тригонометрические функции. Обратные тригонометрические функции
Содержание учебного материала
2




Определения функций, их свойства и графики. Преобразования графиков. Параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

2



Практические занятия
8




Свойства и графики синуса, косинуса, тангенса и котангенса. Гармонические колебания.
Обратные функции и их графики. Обратные тригонометрические функции.
Преобразования графика функции.
Прикладные задачи. Показательные уравнения и неравенства.
Логарифмические уравнения и неравенства.
Тригонометрические уравнения и неравенства.





Контрольная работа №7. Функции и графики.
1

3



Самостоятельная работа обучающихся
5










Работа с учебной литературой по темам: «Арифметические операции над функциями»;
Работа с учебной литературой «Сложная функция».
Выполнение реферата по теме «Преобразования графиков».




Раздел 8. Многогранники и круглые тела.
39


Тема 8.1. Многогранники
Содержание учебного материала
4



Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера. Призма. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб. Пирамида. Правильная пирамида. Усеченная пирамида. Тетраэдр. Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Сечения куба, призмы и пирамиды. Представление о правильных многогранниках (тетраэдре, кубе, октаэдре, додекаэдре и икосаэдре).

2




Практические занятия
6





Различные виды многогранников. Их изображения.
Сечения, развертки многогранников.
Площадь поверхности.
Виды симметрий в пространстве.




Самостоятельная работа обучающихся
6



Выполнение реферата по теме «Сечения многогранников».
Подготовка доклада «Платоновы и архимедовы тела».
Подготовка презентации «Многогранники».



Тема 8.2 Тела и поверхности вращения
Содержание учебного материала
2



Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка.
Осевые сечения и сечения, параллельные основанию. Шар и сфера, их сечения. Касательная плоскость к сфере.

2


Практические занятия
5



Нахождение элементов цилиндра, конуса, шара.
Построение сечений.
Вписанные и описанные тела вращения.
Симметрия тел вращения и многогранников.




Самостоятельная работа обучающихся
5



Работа с дополнительной литературой по теме: «Конические сечения и их применение в технике».
Подготовка реферата по теме «Тела и поверхности вращения»



Тема 8.3 Измерения в геометрии
Содержание учебного материала
3



Объем и его измерение. Интегральная формула объема. Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса.
Формулы объема шара и площади сферы. Подобие тел. Отношения площадей поверхностей и объемов подобных тел.

2


Практические занятия
5



Вычисление площадей и объемов.

2


Контрольная работа №8. Многогранники и круглые тела.
1
3


Самостоятельная работа обучающихся
2



Составление и решение задач прикладного и практического содержания.
Работа с учебной литературой по теме: «Подобие тел. Отношения площадей поверхностей и объемов подобных тел».



Раздел 9. Начала математического анализа.
36


Тема 9.1.Числовые последовательности.

Содержание учебного материала
1





Способы задания и свойства числовых последовательностей. Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Суммирование последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

2



Практические занятия
3



Числовая последовательность, способы ее задания, вычисления членов последовательности.
Предел последовательности. Бесконечно убывающая геометрическая прогрессия.




Самостоятельная работа обучающихся
4





Работа с учебной литературой по теме: «Сумма бесконечно убывающей геометрической прогрессии»;
Работа с учебной литературой по теме «Существование предела монотонной ограниченной последовательности».
Вычисление пределов последовательностей



Тема 9.2. Производная функции
Содержание учебного материала
4



Понятие о производной функции, ее геометрический и физический смысл. Уравнение касательной к графику функции.
Производные суммы, разности, произведения, частные. Производные основных элементарных функций.
Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции функции. Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Вторая производная, ее геометрический и физический смысл.

2


Практические занятия
15



Производная: механический и геометрический смысл производной.
Уравнение касательной в общем виде.
Правила и формулы дифференцирования, таблица производных элементарных функций.
Исследование функции с помощью производной.
Нахождение наибольшего, наименьшего значения и экстремальных значений функции.




Контрольная работа №9. Начала математического анализа.
1
3


Самостоятельная работа обучающихся
8



Решение вариативных задач по темам: «Нахождение скорости процесса, заданного формулой и графиком»; «Дифференцирование обратной функции»
Решение задач по темам «Исследование функций», «Построение графика функции»
Подготовка презентации «Производная».
Решение вариативных задач.



Раздел 10. Интеграл и его применение
20


Тема 10.1 Первообразная и интеграл.

Содержание учебного материала
2



Первообразная. Таблица первообразных. Правила интегрирования.
Применение определенного интеграла для нахождения площади криволинейной трапеции. Формула НьютонаЛейбница. Примеры применения интеграла в физике и геометрии.

2


Практические занятия
12



Интеграл и первообразная.
Теорема НьютонаЛейбница.
Вычисление интеграла.
Применение интеграла к вычислению физических величин и площадей.
Прикладные задачи.




Контрольная работа №10. Интеграл и его применение.
1
3


Самостоятельная работа обучающихся
5



Работа с учебной литературой по темам: «Первообразные обратных тригонометрических функций»;
Выполнение реферата «Приложения интеграла».



Раздел 11. Элементы теории вероятностей и математической статистики.
19


Тема 11.1 Элементы теории вероятностей.
Содержание учебного материала
2





Определение события, вероятности события. Сложение и умножение вероятностей. Понятие о независимости событий.
Дискретная случайная величина, закон ее распределения. Числовые характеристики дискретной случайной величины. Понятие о законе больших чисел.

2



Практические занятия
4



Классическое определение вероятности, свойства вероятностей, теорема о сумме вероятностей.
Вычисление вероятностей.
Прикладные задачи.




Самостоятельная работа обучающихся
3



Создание презентации «История становления теории вероятностей»
Изучить тему «Теорема умножения вероятностей»



Тема 11.2 Элементы математической статистики
Содержание учебного материала
1



Представление данных (таблицы, диаграммы, графики), генеральная совокупность, выборка, среднее арифметическое, медиана.
Решение практических задач математической статистики.

2


Практические занятия
5



Представление числовых данных.
Прикладные задачи.
Средние значения и их применение в статистике.




Самостоятельная работа обучающихся
3



Работа с учебной и справочной информацией по теме «Средние значения и их применение в статистике».
Решение вариативных задач.



Раздел 12.Уравнения и неравенства.
39


Тема12.1 Уравнения и системы уравнений.
Содержание учебного материала
2



Равносильность уравнений, неравенств, систем. Основные приемы их решения (разложение на множители, введение новых неизвестных, подстановка, графический метод).
Рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения и системы.

2


Практические занятия
6



Корни уравнений. Равносильность уравнений. Преобразование уравнений. Основные приемы решения уравнений.
Решение систем уравнений.
Рациональные и иррациональные уравнения и системы.
Показательные и логарифмические уравнения и системы.
Тригонометрические уравнения и системы.




Самостоятельная работа обучающихся
3



Выполнение реферата по теме «Уравнения с модулями»



Тема 12.2 Неравенства
Содержание учебного материала
1



Основные приемы решения неравенств. Рациональные, иррациональные, показательные и тригонометрические неравенства.

2


Практические занятия
3



Рациональные и иррациональные неравенства.
Показательные и логарифмические неравенства.
Тригонометрические неравенства.




Самостоятельная работа обучающихся
2



Выполнение реферата по теме «Метод областей».



Тема 12.3 Использование свойств и графиков функций при решении уравнений и неравенств.







Содержание учебного материала
1



Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

2


Практические занятия
3



Использование свойств и графиков функций для решения уравнений и неравенств.
Графическое решение уравнений и неравенств.
Исследование уравнений и неравенств с параметром.




Самостоятельная работа обучающихся
3



Решение вариативных заданий по теме «Линейные уравнения и неравенства с параметрами».
Решение вариативных заданий по теме «Квадратные уравнения и неравенства с параметрами».



Тема 12.4 Прикладные задачи
Содержание учебного материала
1
3


Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.




Практические занятия
2



Применение математических методов для решения содержательных задач.




Контрольная работа №11. Уравнения и неравенства.
2
3


Самостоятельная работа обучающихся
10



Корни и степени. Логарифмы. Показательные уравнения и неравенства. Логарифмические уравнения и неравенства. Тригонометрические уравнения и неравенства. Производная. Применение производной. Интеграл. Применение интеграла. Многогранники. Тела вращения.
Задачи МС и ТВ.



Всего
351


Промежуточная аттестация в форме письменного экзамена



3. условия реализации УЧЕБНОЙ дисциплины

3.1. Требования к минимальному материально-техническому обеспечению.
Реализация учебной дисциплины требует наличия учебного кабинета «Математики и физики».
Оборудование учебного кабинета:
- посадочные места по количеству обучающихся;
- рабочее место преподавателя;
- комплекты заданий для тестирования и контрольных работ;
- чертежные инструменты;

Технические средства обучения:
- компьютер с лицензионным программным обеспечением;
- мультимедиапроектор;
- интерактивная доска.

3.2. Информационное обеспечение обучения.
Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы
Основные источники:
Алимов Ш.А. и др. Алгебра и начала анализа: учеб. Для 10-11 кл. общеобразоват. учрежд., М.: Просвещение, 2012.
М.И. Башмаков. Математика: учебное пособие для начального и среднего профессионального образования, -М.:«Академия», 2013.
М.И. Башмаков. Математика: задачник для начального и среднего профессионального образования, -М.:«Академия», 2013.
А. В. Погорелов. Геометрия: учебное пособие для 10-11 кл. общеобразоват. учрежд., М.: Просвещение, 2012.

Дополнительные источники:
Атанасян Л.С. и др. Геометрия. 10 -11: учеб. для общеобразоват. учреждений: базовый и профильный уровни М.: Просвещение, 2012г.
М. И. Башмаков. Математика: Книга для преподавателя. -М.:«Академия», 2013.
М. И. Башмаков. Математика: Сборник задач профильной направленности. -М.:«Академия», 2013.
С. А.Канцедал. Дискретная математика. –М.:ИД «ФОРУМ»-ИНФРА – М, 2011.

Интернет-ресурсы:
[ Cкачайте файл, чтобы посмотреть ссылку ] математические статьи
[ Cкачайте файл, чтобы посмотреть ссылку ] математические задачи
[ Cкачайте файл, чтобы посмотреть ссылку ] задачи по теории вероятностей
http//www.allmath.ru материалы по математическим дисциплинам
http//www.alleng.ru/edu/math2.htm решение задач по математике
http//portfolio.1september.ru фестиваль исследовательских и творческих работ учащихся
http//www.school.msu.ru школьный консультационный сайт «Математика»


4. Контроль и оценка результатов освоения УЧЕБНОЙ Дисциплины
Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения
Формы и методы контроля и оценки результатов обучения

1
2


Личностные
работа с учебной и справочной литературой
подготовка доклада
созданий презентаций
выполнение рефератов
создание моделей многогранников и круглых тел
решение вариативных задач
выполнение тестовой работы
составление схем и таблиц
Мониторинг активности участия в конкурсах, олимпиадах, фестивалях и т.п.;
Анкетирование;
Тестирование


Метапредметные
Устный опрос;
Составление презентаций
Составление сравнительной таблицы
Составление схем и таблиц
Выполнение рефератов,

Текущий контроль в форме: устного опроса; защиты практических заданий, творческих работ; контрольных и тестовых заданий по темам учебной дисциплины.

Оценивание результатов разнообразных вне учебных достижений обучающихся (участие в конкурсах, олимпиадах, проектах)

Предметные
Опрос
Тестирование
Письменные самостоятельные работы
Контрольные работы
Практические работы
Решение задач по отдельным темам курса;
Промежуточная аттестация в форме экзамена










13PAGE 14615


13 PAGE \* MERGEFORMAT 14315




Рисунок 1иђ Заголовок 1 Заголовок 2иђ Заголовок 3 Заголовок 4иђ Заголовок 815