Презентация на тему Лист мёбиус


Предметная область: математика Творческая работа учащегося 7б классаБахаева Максима Руководитель: Шелихова Галина Алексеевна * 2015 г Содержание * Титульный лист ……………………….. 1Предисловие ……………………… 3-6Исследовательская работа ………7-20Вывод ………………………………… 21Отзыв руководителя ………………… 22Источники ……………………………… 23Всего слайдов: 23 Предисловие Многие знают, что такое лента (лист) Мёбиуса. Тем, кто ещё не знаком с удивительным листом, который относится к «математическим неожиданностям», мы предлагаем вместе с нами провести исследование и окунуться в светлое чувство познания. * Таинственный и знаменитый лист Мёбиуса (иногда говорят : лента Мёбиуса) придумал в 1858г. немецкий геометр Август Фердинанд Мёбиус (1790-1868), ученик «короля математиков» Гаусса. Мёбиус был первоначально астрономом, как Гаусс и многие другие из тех, кому математика обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров Х1Х в. В возрасте 68 лет ему удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых – лист Мёбиуса. * Лист Мёбиуса – один из объектов области математики под названием «топология» (по-другому – «геометрия положений»). Удивительные свойства листа Мёбиуса – он имеет один край, одну сторону, – не связаны с его положением в пространстве, с понятиями расстояния, угла и тем не менее имеют вполне геометрический характер. Изучением таких свойств занимается топология. В евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые. * Рассказывают, что открыть свой «лист» Мёбиусу помогла служанка, сшившая однажды неправильно концы ленты. Легенда * Увлекательное исследование Запаситесь несколькими листами обычной белой бумаги, клеем и ножницами.  * Берем бумажную ленту АВСD. Прикладываем ее концы АВ и СD друг к другу и склеиваем. Но не как попало, а так, чтобы точка А совпала с точкой D, а точка B с точкой С. А В С D * Получим такое перекрученное кольцо * Зададимся вопросом: сколько сторон у этого куска бумаги? Две, как у любого другого? А ничего подобного. У него ОДНА сторона. Не верите? Хотите – проверьте: попробуйте закрасить это кольцо с одной стороны. * Красим, не отрываемся, на другую сторону не переходим. Красим... Закрасили? А где же вторая, чистая сторона? Нету? Ну то-то. * Теперь второй вопрос. Что будет, если разрезать обычный лист бумаги? Конечно же, два обычных листа бумаги. Точнее, две половинки листа. А что случится, если разрезать вдоль посередине это кольцо (это и есть лист Мёбиуса, или лента Мёбиуса) по всей длине? Два кольца половинной ширины? А ничего подобного. А что? Не скажем. Разрежьте сами. * А вот что получилось у нас Лента перекручена два раза * Теперь сделайте новый лист Мёбиуса и скажите, что будет, если разрезать его вдоль, но не посередине, а ближе к одному краю? То же самое? А ничего подобного! * А вот что получилось у нас * А если на три части? Три ленты? А ничего подобного! * Получим два сцепленных кольца. Одно из них вдвое длиннее исходного и перекручено два раза. Второе- лист Мёбиуса, ширина которого втрое меньше, чем у исходного. * Человечек - перевертыш. Вырежьте бумажного человечка и отправьте его вдоль пунктира, идущего посередине листа Мёбиуса. * Он вернулся к месту старта. Но в каком виде! В перевернутом! А чтобы он вернулся к старту в нормальном положении, ему нужно совершить ещё одно «круголистное » путешествие. Проверьте! * Исследуйте дальше эту поразительную (и тем не менее совершенно реальную) одностороннюю поверхность, и вы получите море удовольствия. Это очень успокаивает расстроенные трудными уроками нервы, уверяем вас. Что может быть полезнее Чистого Знания? * Вывод Лист Мёбиуса – удивительный феномен. Его можно исследовать до бесконечности, мы рассмотрели лишь некоторые его свойства. Надеемся, что мы вас заинтересовали и вы продолжите исследования этого непредсказуемого листа. * Отзыв руководителя Данная презентация была сделана для урока математики по теме «Занимательная математика», также её можно использовать в кружковой работе. Учащиеся провели исследовательскую работу, результатом которой была данная презентация. В ходе работы над презентацией авторы изучили интернет ресурсы на предложенных мной сайтах, провели практические исследования, зафиксировали их на фотографиях с помощью руководителя. В результате работы над презентацией учащиеся совершенствовали навыки работы с интернет ресурсами, научились анализировать их и выбирать главное, проявили творческий подход к оформлению презентации. Работая группой, они учились взаимодействию с коллективом, ответственности за порученное дело. В итоге получилась интересная и познавательная презентация. * Используемая литература: Внеклассная работа по математике В.А.Гусев, А.И.Орлов, А.Л.Розенталь. Математический цветник Ю.А.Данилова.Краткий очерк истории математики. Д. Я. Стройк. Перевод с немецкого и дополнения И.Б.ПОГРЕБЫССКОГО. Ресурсы:http://slovari.yandex.ru/dict/bse/article/00046/48100.htmhttp://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D1%81%D1%82_%D0%9C%D1%91%D0%B1%D0%B8%D1%83%D1%81%D0%B0http://www.genon.ru/GetAnswer.aspx?qid=e2ab6eb5-5fb6-4fc6-b1a4-6ee7961a0dc1www.vokrugsveta.ruhttp://shkolazhizni.ru/archive/0/n-13219/http://www.univer.omsk.su/omsk/Edu/Math/mmebius.htm *