Методические приемы развития пространственных представлений младших школьников на уроках математики.
Методические приемы развития пространственных представлений младших школьников на уроках математики.
Изучая методические разработки и рекомендации о путях и способах формирования пространственных представлений у учащихся, можно заметить, что подавляющее большинство из них (и теоретически, и исходя из опыта работы) приходят к выводу о необходимости:
используя способность детей шестилетнего возраста к восприятию формы начинать формирование пространственных представлений с первых уроков математики в 1-м классе. При знакомстве учеников с геометрическими фигурами следует опираться не только на зрительное восприятие образа ребенком, но и на все другие анализаторы, учитывая мнение психолога Е. Г. Ананьева о том, что связующая роль между всеми анализаторами принадлежит двигательно-кинестетическому анализатору;
придерживаясь последовательности изучения геометрического материала в начальной школе, предусмотренного учебными программами по математике, в первую очередь помочь детям осмыслить основные пространственные отношения, какие, как: быть впереди, находиться между, находиться на противоположной стороне, быть внутри, следовать за, и так далее. Среди них особым видом выделяются такие отношения, как: справа - слева, ближе – дальше, вверху – внизу, над – под, оперирование которыми, в силу их относительности, вызывает значительные трудности.
При формировании таких отношений основными практическими действиями ребенка должны выступать действия по раскрашиванию предметных картинок, рисование «дорожек», обозначение предметов буквами, с помощью которых фиксируется результат мыслительной деятельности по осознанию опыта ориентации в привычном пространстве и начинается овладение простейшими графическими умениями. В частности, И. В. Шадрина рекомендует при формировании названных отношений использование, например, таких заданий:
Раскрась кольца пирамидки, если желтое кольцо находится между красным и синим кольцами, а синее между желтым и зеленым (рис 2.1).
Рис 2.1
2. По щучьему велению ведра с водой ходят в избу сами так, что озеро всегда остается от Емели справа. Нарисуй дорожку, по которой ходит Емеля (рис. 2.2).
Рис. 2.2
3. Мартышка, попугай, слоненок и удав отправляются в путешествие. «Все садятся в вагоны, следующие за моим», - приказала мартышка. «Я поеду между слоненком и удавом», - сказал попугай. «А я поеду за попугаем», - промолвил слоненок. Обозначьте нужной буквой вагон, в котором поедет каждый из друзей (рис. 2.3).
Рис. 2.3
Формирование пространственных представлений учеников начальных классов может осуществляться путем использования некоторых топологических свойств поверхностей (в частности отсутствия связи между формой и размером). Для этого можно применять такие задания, как раскрашивание многоугольных областей, построение плоских графов, поиск путей в графе. Различные способы вложения в пространство можно увидеть, экспериментируя с узлами и зацеплениями, и так далее. Приведем несколько заданий такого типа.
Три кольца сцеплены так, как показано на рисунке. Вырежи кольца и, разрезав только одно из них, сделай зацепление, показанное на рисунке 2.4.
.
Рис.2.4
5. Закончи раскраску фигуры так, чтобы соседние области были одного цвета. Используй только те цвета, которые есть на рисунке 2.5.
Рис. 2.5.
6. Два дома соединены пешеходными дорожками. Нарисуй линией путь, по которому можно обойти все дорожки только по одному разу, если прогулку надо начать и закончить у дома, изображенного слева (рис. 2.6).
Рис. 2.6.
7. Найди и запиши в «окошки» два разных маршрута для туриста, если он хочет побывать в каждом городе только один раз, а его путь начинается и заканчивается в городе А (рис. 2.7).
Т
О
М А
К Е
Рис. 2.7
Развитие пространственных представлений невозможно отделить от формирования умений мысленно представить различные положения предмета, изменения его формы и положения в зависимости от точки зрения, различных поворотов и трансформаций, умением зафиксировать это представление на изображении. Примерами заданий, направленных на формирование таких умений, могут быть следующие:
1.Лист бумаги, сложенный «конвертиком», развернули и повернули другой стороной. Нарисуй получившуюся картинку (рис. 2.8).
Рис. 2.8
2. Дорисуй флажки, соблюдая закономерность их расположения (рис. 2.9).
Рис. 2.9
3. Катя, Маша и Петя нарисовали пейзажи, которые они видят. Найди и обозначь нужной буквой тот пейзаж, который нарисовал каждый из детей (рис. 2.10).
[ Cкачайте файл, чтобы посмотреть картинку ]
[ Cкачайте файл, чтобы посмотреть картинку ]
Рис. 2.10
Достаточно большие возможности, по мнению многих авторов, дают для формирования пространственных представлений упражнения на развитие умений представить мысленно различные положения и форму предметов при изучении многогранников. При этом многогранники рассматриваются как тела, ограниченные замкнутой поверхностью, состоящей из плоских кусков. Естественно, что развитие таких умений должно опираться на практические упражнения с развертками многогранников. Эти упражнения складываются из решения задач следующих видов:
из данной развертки склеить куб (рис. 2.11).
отметить на развертке одним цветом ребра, которые необходимо склеить,
чтобы получить данную фигуру:
Рис. 2.11
раскрасить на данной фигуре стороны (грани) в соответствии с раскраской его развертки (рис. 1.12)
рис. 2.12
По мнению Т. М. Щегловой, кандидата психологических наук, преподавателя Шуйского госпединститута, формированию пространственных представлений должно отводиться постоянное внимание не только на отдельных уроках (с ответствующими темами), а в течение всего периода обучения математике в начальной школе, то есть на всех уроках, содержащих геометрический материал. При этом, по ее утверждению, необходимо придерживаться последовательности, которая соответствует интуитивной логике детей в ознакомлении с соответствующими понятиями, опираясь на практическую деятельность учеников в сочетании с дидактически обоснованной игровой формой.
Преподаватели Московского Государственного педагогического института
Г. Г. Кочеткова и Е. А. Крапивина приходят к выводу о том, что формирование пространственных представлений может и должно производиться уже на этапе изучения с младшими школьниками таких понятий, как точка, линия, отрезок, прямоугольник и так далее. Геометрические задания, по их мнению – с которым следует согласиться, будут способствовать развитию пространственных представлений, если операции по выполнению этих заданий будут связаны с поворотами фигур и одновременным активным включением в объяснение таких понятий, как вверх – вниз, влево – вправо и т.д.
Приведем некоторые примеры таких заданий:
1. Назовите точки, которые лежат на прямой, которые расположены над прямой, под прямой. .В .Г
. З . А . Б . Д
.И .Ж
Рис.2.13
Какие из этих точек будут лежать на прямой (принадлежать прямой), если её продолжить вправо, влево? Проверьте.
Найдите лишнюю фигуру. Чем она отличается от всех остальных, почему она лишняя? (Последовательно рассматриваются ряды фигур а), б), в), г), д).)
а) б)
1 2 3 4 1 2 3 4
в) 1 2 3 4 г) 1 2 3 4
д)
1 2 3 4
Рис.2.14
Сначала линии в рядах не пронумерованы. Желательно их нарисовать разным цветом.
- посмотрите внимательно на эти линии (рассматриваем ряд а).). Найдите среди них одну линию, которая чем-то отличается от других. Чем она отличается? Каким признаком? Почему вы назвали ее лишней?
- какие линии нарисовал Карандаш? (прямые).
- сколько прямых линий он нарисовал? (показываем и считаем)
- какая по счету красная линия? (называют). Давайте обозначим её цифрой. (обозначают). Аналогичная работа проводится с остальными фигурами в рядах.
На доске или плакате рисуется несколько последовательностей лучей, например таких, какие изображены на рисунке ниже. С помощью вопросов типа: Что интересное заметили? Как меняется направление линий? и подобных детям предлагается найти закономерность в каждом ряде и продолжить этот ряд.
?
* * *
?
* * *
?
* * *
Рис. 2.15
4. Соедините точки так, чтобы получились ступеньки. Как называется такая геометрическая фигура? (ломаная). Из скольких звеньев она состоит? Сколько ступенек находятся слева от зеленой? А сколько справа? Покажите ступеньки, которые выше зеленой ступеньки? Сколько ступенек ниже зеленой? и т.п.(звенья ломаной рисовать разным цветом)
?
* * *
Рис.2.16
По какому правилу составлен каждый ряд фигур? Что изменяется? Продолжите ряд по тому же правилу. Какая из нижних фигур а), б), в) или г) будет следующей в каждом случае?
А)
13 SHAPE \* MERGEFORMAT 1415
1. 2. 3. 4.
а) б) в) г)
Б)
?
1. 2. 3. 4.
а) б) в)
В)
?
1. 2. 3. 4.
а) б) в) г)
Рис.2.17
6. Задачи на превращения геометрических фигур. На первом этапе работы с такими задачами ученики выполняют задания, используя фигуры, вырезанные из цветного картона. На втором этапе, после приобретения соответствующих навыков, задания выполняются мысленно с последующей проверкой верности своего выбора путем сбора фигуры. В качестве образцов таких заданий можно предложить следующие:
Какую фигуру справа можно получить при складывании данных частей, расположенных слева;
Как называются выбранные вами фигуры? Чем они похожи? Чем отличаются?
Какие еще фигуры можно собрать из двух фигур, изображенных слева? и т.д.
а)
13 SHAPE \* MERGEFORMAT 1415
б)
в)
Рис.2.18
Ответы: а) Фигуру А и фигуру Б; прямоугольники одинакового размера; взаимным расположением на плоскости.
б) фигуру А и фигуру В; четырехугольники; А – квадрат, В – прямоугольник.
в) фигуру Б и фигуру В; общее – квадраты; отличия – фигура Б повернута относительно фигуры В на 90о. Можно получить и такие фигуры:
7. Задания на подборку фигуры заданной формы и размера, типа «Подбери заплатку». Задания выполняются путем логического мышления; предположения тетей проверяются практически, так как все детали съёмные.
а)
б)
Ответы: а) 2; б) 2, 4.
Рис.2.19
По мнению этих же авторов достаточно большое значение в формировании пространственных представлений младших школьников имеет организация работы по ориентации плоских и объемных геометрических фигур. С этой целью предлагается использование серий упражнений на соответствие образа (модели) и его изображения с учетом переориентации на плоскости и в пространстве на основе простой формы ориентировки по «схеме тела».
8.Так в задании «Что изменилось? Что не изменилось?» выстраиваются в ряд различные по цвету прямоугольники, которые меняют положение в пространстве в вертикальном направлении, что описывается отношениями «вверху – внизу», «между».
Рис.2.20
9.В задании «Раскрась фигуру справа» из нижнего ряда следует выбрать квадрат, имеющий такой же рисунок, как и исходный, но изменивший свое положение при повороте его вверх на один оборот; это упражнение одновременно с развитием пространственной ориентации закрепляет такие понятия, как «справа – слева». Это квадрат 2.
Рис.2.2113 SHAPE \* MERGEFORMAT 1415
10. В заданиях типа «Чем похожи? Чем отличаются?» формируются и развиваются пространственные связи «слева – справа», «сверху – снизу», «повернуть вправо – повернуть влево» и т.п:
13 SHAPE \* MERGEFORMAT 1415
Рис.2.22
11. В заданиях типа «Выбери фигуру, которую нужно дорисовать» предполагается формирование умений осуществлять поворот вправо, влево, вверх или вниз на один или несколько оборотов. В предлагаемом ниже упражнении осуществляется поворот «вверх – влево», при котором круг, расположенный внизу, перемещается вправо.
13 SHAPE \* MERGEFORMAT 1415
Рис.2.23
Аналогичные задания – упражнения можно производить и с другими геометрическими фигурами, а также с рисунками. Большие возможности для проведения таких упражнений предоставляются, если использовать на уроках математики кубики из детского конструктора, а при отсутствии таковых – обычные деревянные кубики, которые можно сделать в школьных мастерских. Делая пометки на одной или двух гранях кубика в виде точек разного цвета или окрашивая их в разные цвета, можно составить целые серии упражнений разной направленности и разного уровня сложности для формирования и развития пространственных представлений учеников начального звена обучения. Эти серии можно условно разделить на несколько групп по степени сложности и глубине формирования пространственных представлений у учащихся:
1 группа. «Оперирование моделью кубика». Располагая кубик к ученику фронтальной гранью с пометкой, можно выполнить такие упражнения:
а) кубик повернули на один оборот влево. Какое положение займет модель кубика? Найди это положение на чертеже?
б) поверни модель кубика так, чтобы он занял указанное на чертеже положение. И т.д.
2 группа. «Оперирование образом в фиксированной системе отсчета, совпадающей со «схемой тела».
Осуществляются повороты кубика на один оборот вправо (влево) в строго фиксированной фронтальной системе отсчета. Оперирование пространственным образом происходит в результате перекодировки образа, то есть перехода из трехмерного пространства в двумерное путем вычленения плоского элемента объемной формы. Ребенок осуществляет мысленное вращение не самого кубика а лишь его передней грани.
Не описывая подробно механизм выполнения упражнений, можно выделить еще две группы подобных заданий:
3 группа. «Соотнесение рисунков на гранях кубика с изменением их положения в пространстве»;
4 группа. «Переориентировка кубика в результате нескольких поворотов».
Учитывая тот факт, что эффективным средством познания пространства для младшего школьника являются его собственные практические действия с объектами, целесообразно и необходимо при выполнении упражнений с кубиками использовать модели кубиков каждым ребенком с целью практической проверки высказанных догадок и гипотез. При таком подходе к выполнению упражнений на расположение пространственных объектов по отношению друг к другу относительно «схемы своего тела» или других точек отсчета, узнавание и изображение этих объектов и их проекций на чертеже или рисунке представляют достаточную ценность как для формирования пространственных представлений, так и для развития пространственного мышления младших школьников.
Приводя в качестве примеров способы формирования пространственных представлений младших школьников, изложенные выше, необходимо сказать о том, что существенную помощь учителям начальной школы в реализации данного вопроса призван оказать учебный комплекс по математике для 1 – 4 классов, выпускаемый издательским Домом Российской академии образования (ООО «Баласс») в рамках образовательной системы «Школа 2100» - авторы: Демидова Т.Е., Козлова С.А., Тонких А.П. и др. Комплекс состоит из 3-х учебников «Моя математика» для каждого из 1 – 4 классов и содержит достаточно большое число упражнений, на основе которых возможно эффективное формирование пространственных представлений младших школьников. Приведем несколько примеров:
Математика -1 класс.
1 часть.
Урок № 1. Тема: «Цвет. Знакомство с радугой».
Задача № 2. Наряду со знакомством с цветами радуги путем постановки вопросов типа: Какой цвет находится под синим? Над желтым? Между голубым и зеленым? и т.д. формируются понятия «вверху», «внизу», «между», «выше», «ниже»;
Задача № 3. Позволяет формировать отношения «справа – слева», «вверху – внизу», «между» и другие;
Задача № 5. Позволяет формировать понятия «справа», «слева», «между».
Урок № 2. Тема: «Форма».
Задача № 1. Кроме изучения вида геометрических фигур (квадрат, круг, треугольник, овал, прямоугольник) формируются представления «слева», «справа», «между», «вверху», «внизу»;
Задача № 4. Наряду с развитием логики (Какой цветок в букете лишний) развитие представлений «между», «левее», «правее» и т.д.
В этой же части аналогичные упражнения можно найти в разработках уроков №№ 3 – 9, 12 – 14 и других.
2 часть.
Задачи, позволяющие формировать пространственные представления учащихся, имеются в уроках: № 41 (задача № 5), № 42 (задачи № 1,2, 3), № 43 (задача № 7), № 44 (задачи № 3,4), № 45 (задачи № 1 – 3), № 47 (задачи № 1 – 3,7) и так далее.
Подводя итог сказанному выше, можно утвердительно сказать о том, что поступление названных учебников «Моя математика» в школы даст возможность учителям начального звена обучения более системно и продуктивней осуществлять развитие пространственных представлений младших школьников.
13PAGE 15
А
А
А
А
?
?
А
Б
В
А
Б
В
А
Б
В
1
2
3
1
2
3
4
1
2
3
1
2
3
C:\Documents and Settings\Администратор\Рабочий стол\Ф О Т О\115.jpgЗаголовок 115