Презентация по электротехнике на тему Электрический конденсатор
Электрический конденсатор
История создания конденсатораИстория конденсатора насчитывает более 250лет. Он был изобретен немецким физиком Эвальдом Юргеном фон Клейстом и голландским физиком Питером Ван Мушенбруком в1745 году в университете немецкого города Лейдена. Устройство, носившее название «Лейденская банка», имело простейшую конструкцию ипозволяло накапливать электрическую энергию в небольших объемах. К сожалению, большого применения конденсатор тогда не нашел и использовался в основном для розыгрышей. Конденсатор заряжали от электрофорной машины, до него дотрагивались люди и получали кратковременный удар электрическим током.
С тех пор конденсаторы очень сильно изменились, появилось множество форм и конструкций, но принципы накопления энергии остались неизменными. Совершенствование технологий и применение новых материалов позволили значительно улучшить конструкцию конденсаторов. Суммарный заряд, который мог накапливаться в лейденской банке объемом 1 литр, теперь можно «уместить» в устройстве размером не больше булавочной головки.За последние 30 лет размеры конденсаторов уменьшались столь же быстро, сколь быстро происходила миниатюризация в электронике.
Конденса́торКонденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик
Различные конденсаторы для объёмного монтажаСлева — конденсаторы для поверхностного монтажа; справа — конденсаторы для объёмного монтажа; сверху — керамические; снизу — электролитические. На полярных SMD конденсаторах + обозначен полоской.
Свойства конденсатораКонденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.
Обозначениепо ГОСТ 2.728-74ОписаниеКонденсатор постоянной ёмкостиПоляризованный конденсаторПодстроечный конденсатор переменной ёмкостиОбозначениепо ГОСТ 2.728-74ОписаниеКонденсатор постоянной ёмкостиПоляризованный конденсаторПодстроечный конденсатор переменной ёмкости{775DCB02-9BB8-47FD-8907-85C794F793BA}Обозначениепо ГОСТ 2.728-74ОписаниеКонденсатор постоянной ёмкостиПоляризованный конденсаторПодстроечный конденсатор переменной ёмкостиВарикапОбозначение конденсаторов на схемахНа электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но нередко и в нанофарадах.
Основные параметрыОсновной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд.
Формула ёмкостиC = Q/U – электрическая ёмкость, где:C – ёмкость [В]Q – кол-во зарядов [Кл]U – напряжение [В]С =ɛ ɛₒS/d – параметрическая ёмкость, где: ε — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единице), ε0 — электрическая постоянная, численно равная 8,86×10¯¹² Ф/мS – площадь пластин конденсатора [м²]d – расстояние между пластинами конденсатора[м]{5940675A-B579-460E-94D1-54222C63F5DA}{ED083AE6-46FA-4A59-8FB0-9F97EB10719F}
Соединение конденсаторовДля получения больших ёмкостей конденсаторы соединяют параллельно. С=С₁+С₂+…Сn [мкФ]При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.
Соединение конденсаторовПри последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счёт разделения зарядов, ранее нейтрализовавших друг друга. Общая ёмкость батареи последовательно соединённых конденсаторов равна СЦ = [мкФ]
ПолярностьМногие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.Современные конденсаторы, разрушившиеся без взрыва из-за специально разрывающейся конструкции верхней крышки. Разрушение возможно из-за действия температуры и напряжения, не соответствовавших рабочим, или старения. Конденсаторы с разорванной крышкой практически неработоспособны и требуют замены, а если она просто вспучена но еще не разорвана — скорее всего скоро он выйдет из строя или сильно изменятся параметры, что сделает его использование невозможным.
По виду диэлектрика различаютКонденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).Конденсаторы с газообразным диэлектриком.Конденсаторы с жидким диэлектриком.Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные,керамические, тонкослойные из неорганических плёнок.Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, изалюминиевой, ниобиевой или танталовой фольги или спечённого порошка
Конденсаторы по возможности изменения своей ёмкостиПостоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.
Типы конденсаторов:БМ - бумажный малогабаритныйБМТ - бумажный малогабаритный теплостойкийКД - керамический дисковыйКЛС - керамический литой секционныйКМ - керамический монолитныйКПК-М - подстроечный керамический малогабаритныйКСО - слюдянной опресованныйКТ - керамический трубчатыйМБГ - металлобумажный герметизированныйМБГО - металлобумажный герметизированный однослойныйМБГТ - металлобумажный герметизированный теплостойкийМБГЧ - металлобумажный герметизированный однослойныйМБМ - металлобумажный малогабаритныйПМ - полистироловый малогабаритныйПО - пленочный открытыйПСО - пленочный стирофлексный открытый
Применение конденсаторовКонденсаторы (совместно с катушками индуктивности и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках, электромагнитных ускорителях,импульсных лазерах с оптической накачкой, генераторах Маркса, (ГИН; ГИТ)Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.Аккумуляторов электрической энергии. В этом случае на обкладках конденсатора должно быть достаточно постоянное значения напряжения и тока разряда. При этом сам разряд должен быть значительным по времени. В настоящее время идут опытные разработки электромобилей и гибридов с применением конденсаторов. Так же существуют некоторые модели трамваев в которых конденсаторы применяются для питания тяговых электродвигателей при движении по обесточенным участкам.
УДАЧИ!