Презентация студента по геометрии по теме Призма
ПризмаПрезентацияСтудента группы 95-АПоповаРафаэля
style.rotation
Призмой называется многогранник, две грани которого -угольники, а остальные граней — параллелограммы.Что такое призма?
История создания призмы Еще в древности существовали два пути определения геометрических понятий. Первый вел от фигур высшего порядка к фигурам низшего. Такой точки зрения придерживался, в частности, Евклид, определяющий поверхность как границу тела, линию - как границу поверхности, концы же линии - как точки. Второй путь ведет, наоборот, от фигур низшего измерения к фигурам высшего: движением точки образуется линия, аналогично из линий составляется поверхность и т. д. История создания призмы
ppt_wr
Одним из первых, который соединил обе эти точки зрения, был Герон Александрийский, писавший, что тело ограничивается поверхностью и вместе с этим может быть рассмотрено как образованное движением поверхности. В появившихся позже на протяжении веков учебниках геометрии принималась за основу то одна, то другая, а иногда и обе вместе точки зрения.
style.rotation
Подобно тому, как треугольник в понимании Евклида не являются пустым, т. е. представляет собой часть плоскости, ограниченную тремя неконкурентными (т. е. не пересекающимися в одной точке) отрезками, так и многогранник у него не пустой, не полый, а чем-то заполненный (по-нашему - частью пространства) . В античной математике, однако, понятия отвлеченного пространства еще не было. Евклид определяет призму как телесную фигуру, заключенную между двумя равными и параллельными плоскостями (основаниями) и с боковыми гранями - параллелограммами.
Для того чтобы это определение было вполне корректным, следовало бы, однако, доказать, что плоскости, проходящие через пары непараллельных сторон оснований, пересекаются по параллельным прямым. Евклид употребляет термин “плоскость” как в широком смысле (рассматривая ее неограниченно продолженной во все направления) , так и в смысле конечной, ограниченной ее части, в частности грани, аналогично применению им термина “прямая” (в широком смысле - бесконечная прямая и в узком - отрезок) . В XVIII в. Тейлор дал такое определение призмы: это многогранник, у которого все грани, кроме двух, параллельны одной прямой.
В памятниках вавилонской и древнеегипетской архитектуры встречаются такие геометрические фигуры, как куб, параллелепипед, призма. Важнейшей задачей египетской и вавилонской геометрии было определение объема различных пространственных фигур. Эта задача отвечала необходимости строить дома, дворцы, храмы и другие сооружения.
Часть геометрии, в которой изучаются свойства куба, призмы, параллелепипеда и других геометрических тел и пространственных фигур, издавна называется стереометрией; Слово это греческого происхождения (“стереос” - пространственный, “метрео” - измеряю) и встречается еще у знаменитого древнегреческого философа Аристотеля. Стереометрия возникла позже, чем планиметрия.
Евклид дает следующее определение призмы: “Призма есть телесная (т. е. пространственная) фигура, заключенная между плоскостями, из которых две противоположные равны и параллельны, остальные же - параллелограммы”. Тут, как и во многих других местах, Евклид употребляет термин “плоскость” не в смысле безгранично продолженной плоскости, а в смысле ограниченной ее части, грани, подобно тому как “прямая” означает у него и отрезок прямой.
Термин “призма” греческого происхождения и буквально означает “отпиленное” (тело) . Термин “параллелепипедальное тело” встречается впервые у Евклида и означает дословно “параллеле-плоскостное тело”. Греческое слово “кубос” употребляется Евклидом в том же смысле, что и наше слово “куб”
О призме
Части призмы
А теперь: рёбра. Смотри: бывают рёбра основания и боковые рёбра.
Если в основании призмы лежит треугольник, то призма называется треугольной, если четырёхугольник, то – четырёхугольной и так далее: бывают и десятиугольные, и двадцатиугольные призмы
Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.Высота призмы
ppt_wr
Если боковые рёбра призмы перпендикулярны основанию, то призма называется прямой.У прямой призмы:все боковые грани прямоугольники;все сечения проходящие через боковые рёбра – прямоугольники;и даже сечения, проходящие только через одно боковое ребро - прямоугольники.Прямая призма
ppt_wr
Главная формула объема призмы
ppt_wr
Площадь поверхности призмы
Подготовил ПоповРафаэльСпасибо за внимание
ppt_wr
style.rotation
style.rotation
style.rotation