Презентация для повторения модуля Геометрия при подготовке к ГИА (9 класс)
Подготовка к ГИА модуль «Геометрия» МБОУ «Базовая Павловская СОШ» Учитель математики Найданова Д.Р. Содержание: УглыПараллельные прямыеТреугольникиМногоугольникиПараллелограмм ТрапецияПрямоугольникРомбКвадратОкружность и круг Фигура, образованная двумя лучами (стороны угла) с общим началом (вершиной), называется углом Углы Угол называется развернутым, если его стороны вместе образуют прямую. А=180 Два угла называются смежными, если одна сторона у них общая, а две другие составляют вместе прямую. СОВ+ ВОА=180 Смежные углы Угол равный своему смежному, называется прямым. АВD= DВС=90DВАС Биссектриса – это луч, исходящий из вершины угла и делящий его на два равных угла. АВD= DВС= АВС Биссектриса угла Если угол меньше 90, он называется острым (АОВ),если угол больше 90, но меньше 180 – тупым (СОВ). Два угла называются вертикальными, если стороны одного угла являются продолжениями другого. Вертикальные углы равны.АОВ=СОDАОС=ВОD Вертикальные углы Две прямые при пересечении образуют 4 угла. Прямые, пересекающиеся под прямым углом, называются перпендикулярными. Решение:СОВ и АОС смежные, значит,СОВ+АОС=180,СОВ=180–150=30Ответ: 30 Закрепление Задача: Найдите градусную меру угла СОВ, если АОС=150 Параллельные прямые Прямые, которые не пересекаются, называются параллельными.Две прямые, перпендикулярные одной и той же прямой, параллельны. ас и вс, значит, авДве прямые, параллельные третьей, так же параллельны. ав и вс, то ас. Если точка А не лежит на прямой а, то можно провести ровно одну прямую в, проходящую через точку А и параллельную прямой а. Прямые и секущая Две прямые пересеченные третьей, которая называется секущей. 4 и 5, 3 и 6 – накрест лежащие; 1 и 5, 2 и 6, 8 и 4, 7 и 3 – соответственные;4 и 6, 3 и 5 –односторонние. Признаки параллельности прямых Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. Если при пересечении двух прямых секущей сумма односторонних углов равна 180 градусов. Верно и обратное. Закрепление Задача: Докажите, что прямые а и в параллельны. Доказательство:DEB=FEN=120 (как вертикальные углы)DEB= АBМ (соответственные) ав Серединные перпендикуляр Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярна к нему. а А В а – серединный перпендикуляр к отрезку АВ Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. а – серединный перпендикуляр к отрезку АВ, D – середина отрезка АВ, АС = ВС Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке А В С m n p O m, n, p пересекаются в точке О Точка пересечения серединных перпендикуляров Теорема Фалеса Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне. ОА1=А1А2=А2А3 и А1В1 А2В2 А3В3, тоОВ1=В1В2=В2В3 Треугольник Треугольником называется многоугольник с тремя углами.∆АВСПериметром треугольника называется сумма длин его сторон.Р∆АВС=АВ+ВС+АС Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.АМ – медиана треугольника А М Высота, медиана, биссектриса треугольника Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника.АА1 – биссектриса треугольника А А1 Высота, медиана, биссектриса треугольника Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника.АН - высота Закрепление Задание: Укажите номера верных утверждений:Сумма смежных углов равна 90.При пересечении параллельных прямых секущей накрест лежащие углы равны.Вертикальные углы равны.Развернутый угол, меньше 90.Если точки А1, А2 лежат на одной стороне угла В2ОА2, а точки В1, В2 – на другой, А1В1 А2В2 и ОА1=А1А2, то В1В2=2ОВ1 Закрепление Решение:Неверно, так как сумма смежных углов равна 180.Верно, так как является свойством параллельных прямых.Верно, так как свойство вертикальных углов.Неверно, так как развернутый угол равен 180.Неверно, так как В1В2=ОВ1Ответ: 23 * Свойства треугольника Сумма углов треугольника равна 180°.Каждая сторона треугольника меньше суммы двух других сторон.Против большей стороны треугольника лежит больший угол.Против большего угла треугольника лежит большая сторона * Угол, смежный с каким-нибудь углом треугольника, называется внешним углом треугольника.Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.СВК=САВ+ВСА Внешние углы треугольника Равенство треугольников Равные треугольники – это такие треугольники, которые можно совместить друг с другом, наложив друг на друга так, чтобы они совпали. I признак. По двум сторонам и углу между ними А N М К С В Если A = K, AB = KM, AC = KN,то ∆ABC = ∆KMN Равенство треугольников II признак. По стороне и прилежащим к ней углам А C B P N К Если AB = KPB = PА= Кто ∆ABC = ∆KPN III признак. По трем сторонам А C B M K N Если АВ = КМ, АС = KN, BC = MN,то ∆АВС = ∆KNM Фигуры, которые имеют различные размеры, но одинаковую форму называются подобными. Признаки подобия треугольников k – коэффициент подобия. Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны Если A = A1, B = В1, то ∆АВС ~ ∆ А1В1С1 Признаки подобия треугольников 2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны Если, А = А1,то ∆АВС ~ ∆А1В1С1 Признаки подобия треугольников 3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны Если ∆АВС ~ ∆А1В1С1 Признаки подобия треугольников Закрепление Задание: Найдите градусную меру С ∆АВС, если А=120, В=30. Решение: А+ В+С=180, 120+30 +С=180, С=30.Ответ: 30 Закрепление Задание: Найдите градусную меру меньшего угла между биссектрисами углов ∆АВС, проведенными из вершин А и С, если В=110, С=24. Решение: А+ В+С=180, А +110+24=180, А=46.АА1 и СС1 – биссектрисы МСА= С:2=12МАС= А:2=26Меньший угол между биссектрисами – это внешний угол ∆АМС, А1МС= МАС+МСА=35Ответ: 35 Закрепление Задание: Найдите сторону А1С1 ∆А1В1С1, если В1А1С1=ВАС, В1С1А1= ВСА, АС=10, В1С1=4, ВС=8. Решение: В1А1С1=ВАС, В1С1А1= ВСА (по условию) ∆АВС ~ ∆А1В1С1 (по двум углам)Ответ: 5. Прямоугольный треугольник (радиан) Определите в радианах 30, 60 и 180 Прямоугольный треугольник Треугольник называется прямоугольным, если один из его углов равен 90. АВ – гипотенузаАС, ВС - катеты Теорема Пифагора: АВ2=АС2+ ВС2 В прямоугольном треугольнике катет, лежащий против угла в 30, равен половине гипотенузы. Соотношение между сторонами и углами прямоугольного треугольника Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему Значения синуса и косинуса некоторых углов Закрепление Задание: Найдите cos120. Решение:Т.к. угол 120 смежен с углом 60 (120+60=180), тоОтвет: – 0,5. Закрепление Задание: Найдите сторону АС ∆АВС , если АВС=90, АВ=5, ВС=4. Решение:По теореме Пифагора АВ2=АС2+ ВС2АС2=АВ2 – ВС2 Ответ: 3. Средняя линяя треугольника Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны. МN – средняя линияMNAC Точка пересечения медиан треугольника Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины ВР, СК, АМ – медианы ∆АВСО – точка пересечения медиан Точка пересечения биссектрис и высот треугольника Биссектрисы треугольника пересекаются в одной точке А В С К М Р О Высоты треугольника (или их продолжения) пересекаются в одной точке А С В К М Р О Равнобедренный треугольник Треугольник называется равнобедренным, если две его стороны (боковые) равны. Свойства:В равнобедренном треугольнике углы при основании равны А=С.В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Равносторонний треугольник Треугольник, все стороны которого равны, называется равносторонним (правильным).В равностороннем треугольнике все углы равны 60.Медиана, биссектриса и высота, проведенные к любой из его сторон, совпадают А В С Закрепление Задание: Найдите сторону АС ∆АВС , если ВАС=120, АВС=30 АВ=5. Решение:ВАС+ АВС+АСВ=180 АСВ=180– ВАС –АВСАСВ=180 –120 –30 =30 АВС= АСВ=30 ∆АВС – равнобедренный АС=АВ=5Ответ: 5. Закрепление Задание: Медианы АА1 и ВВ1 ∆АВС пересекаются в точке О. Найдите АО, если АА1=6. Решение:Ответ: 4. Закрепление Задание: Периметр треугольника равен 39. найдите его стороны, если стороны подобного ему треугольника равны 3, 4 и 6. Решение:∆АВС~∆А1В1С1 по условию k–коэффициент подобияТогда стороны равны 3k, 4k и 6k. Р= 3k+4k+6k=3913k=39k=3 – коэффициент подобия3·3=94·3=126·3=18Ответ:9, 12, 18. Площадь треугольника Площадь треугольника равна половине произведения любой его стороны на высоту, проведенную к этой стороне. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними. Треугольники с равной площадью называются равновеликими. Площадь треугольника Площадь прямоугольного треугольника равна половине произведения его катетов. Закрепление Задание: Найдите площадь треугольника на рисунке. Решение:∆АВС – прямоугольный. По теореме Пифагора АВ2=АС2+ ВС2ВС2=АВ2 –АС2 Ответ: 6. Закрепление Задание: Найдите площади треугольников изображенных на клетчатой бумаге с размером клетки 11 на рисунке. Закрепление Решение:а)б)в)Ответ: а) 7,5б) 14в) 9 5 Закрепление Задание: Найдите площадь ∆АВС, изображенного на рисунке. Решение:∆АВС – равнобедренный, высота ВH является медианойАН=НС=14:2=7∆АВН – прямоугольныйВН2=АВ2 –АН2 Ответ: 168. Многоугольники Сумма углов выпуклого n-угольника равна (n-2)·180 Правильным многоугольником называется многоугольник, у которого все стороны равны и все углы равны. Параллелограмм Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны. АВСD – параллелограмм АВCD и BCАD Площадь параллелограмма равна произведению основания на высоту, проведенную к этому основанию. SABCD=АD·CH Параллелограмм Площадь параллелограмма равна произведению двух его сторон на синус угла между ними. SABCD=АВ·АD·sinBAD Свойства параллелограмма Свойства:Сумма углов параллелограмма равна 360.А+B+C+D=3602. В параллелограмме противоположные стороны равны.АВ=CD и BC=АD3. В параллелограмме противоположные углы равны. А=С, B=D 4. Диагонали параллелограмма точкой пересечения делятся пополам. AM=MC, BM=MD. Признаки параллелограмма Признаки: Если в четырехугольнике две сторон равны и параллельны, то этот четырехугольник – параллелограмм.Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник – параллелограмм.Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм. Закрепление Задание: В четырехугольнике АВСD, АВ=СD=5, DBA=CDB=30. Найдите АО, если АС=8. Решение:Т.к. DBA=CDB (накрест лежащие), то ВАСD (по признаку параллельных прямых), ВА=СD (по условию) АВСD – параллелограмм (по признаку параллелограмма)АО=АС:2АО=4Ответ: 4. Трапеция Трапеция – это четырехугольник, у которого две стороны параллельны (основания трапеции), а две другие не параллельны. BC и AD – основания трапецииАВ и CD – боковые стороны Трапеция Площадь трапеции равна полусумме оснований умноженной на высоту. Средняя линия трапеции – это отрезок, соединяющий середины ее боковых сторон. МК – средняя линяя трапеции АВСD Средняя линяя трапеции параллельна основаниям и равна их полусумме. Трапеция Трапеция называется равнобедренной, если ее боковые стороны равны . АВ=CD В равнобедренной трапеции углы при каждом из основании равны А=D, В=C (верно и обратное утверждение) В равнобедренной трапеции диагонали равны DВ=АC (верно и обратное утверждение) Закрепление Задание: Найдите площадь трапеции на рисунке. Решение:ВСЕF – параллелограмм (по признаку параллелограмма)FE=CB∆АВF – прямоугольный, по теореме ПифагораAF2=АВ2 –BF2ED=4 AD=4+4+3=11Ответ: 21. Прямоугольник Прямоугольник – это параллелограмм, у которого все углы прямые. Если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник. Площадь прямоугольника равна произведению его смежных сторон. SABCD=AB·AD Диагонали любого прямоугольника равны. Ромб Ромб – это четырехугольник, все стороны которого равны между собой. Если в параллелограмме диагонали перпендикулярны, то этот параллелограмм – ромб. Площадь ромба равна половине произведения его диагоналей. Ромб является параллелограммом, диагонали которого взаимно перпендикулярны. Квадрат Квадрат– это такой прямоугольник, у которого все стороны равны. Квадрат также является ромбом, а поэтому сочетает в себе свойства и прямоугольника и ромба. Площадь квадрата равна квадрату его стороны. SABCD=AB2=а2 АС – диагональ квадрата. Закрепление Задание: Найдите площадь и высоту ромба ABCD, изображенного на рисунке. Решение:ВD=2·BO=2·6=12AC=2·AO=2·8=16 (по свойству диагоналей)SABCD=АD·CH96=10·CHCH=96:10=9,6Ответ: 96; 9,6. Закрепление Задание: Укажите номера верных утверждений.В равностороннем треугольнике все углы 90.Любой прямоугольник является ромбом.В равнобедренной трапеции углы при основании равны.Диагонали параллелограмма точкой пересечения делятся пополам.Сумма двух соседних углов ромба может быть больше 180. Закрепление Решение:Неверно, т.к. в равностороннем треугольнике все углы 60.Неверно. Верно, это свойство равнобедренной трапеции.Верно, это свойство параллелограмма.Неверно, т.к. сумма двух соседних углов ромба равна180. Окружность и круг Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки (центра окружности). Отрезок, соединяющий центр окружности с какой-либо точкой окружности, называется радиусом.АО - радиус Отрезок, соединяющий две точки окружности, называется хордой. СD и АВ – хорда Хорда, проходящая через центр окружности, называется диаметром. АВ - диаметр Окружность и круг Любые две точки окружности делят её на две части. Каждая из этих частей называется дугой окружности .АNB AMB – дуги окружности Часть плоскости, ограниченная окружностью, называется кругом. Взаимное расположение прямой и окружности Окружность и прямая могут иметь: две общих точки (секущая), одну общую точку (касательная),не иметь общих точек. Радиус проведенный в точку касания, перпендикулярен касательной. Взаимное расположение двух окружностей Две окружности могут иметь: две общих точки (секущая), одну общую точку (касательная),не иметь общих точек. Взаимное расположение двух окружностей Если две окружности касаются, их центры и точки касания лежат на одной прямой.О1О2= О1А+ АО2О3О4= О3М – О4М Длина окружности и площадь круга R – радиус окружностиD – диаметр окружностиДлина окружности L=2R L=dПлощадь круга, ограниченного данной окружностью S=R2 Углы связанные с окружностью Угол с вершиной в центре окружности называется центральным. Угловая величина дуги равна величине центрального угла, на её опирающегося. Угол, вершина которого принадлежит окружности, а стороны пересекают окружность, называется вписанным. Вписанный угол равен половине величины дуги, на которую он опирается. Углы связанные с окружностью Вписанные углы, опирающиеся на одну дугу, равны.АВС=АМС Вписанный угол равен половине центрального угла, опирающегося на ту же дугу. Углы связанные с окружностью Угол между пересекающимися хордами равен полусумме противоположных дуг, высекаемых хордами. Угол между двумя секущими, пересекающимися вне круга, равен полуразности дуг, высекаемых секущими на окружности. Углы связанные с окружностью Угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними. Длина дуги и площадь сектора Если величина центрального угла (в градусах) равна , то длина дуги равна Найти длину дуги, если =60, R=5.Решение: Длина дуги и площадь сектора Круговым сектором (или просто сектором) называется часть круга, ограниченная дугой и двумя радиусами.Дуга, которая ограничивает сектор, называется дугой сектора. Если величина дуги равна (в градусах), то площадь сектора равна Закрепление В окружности с центром О. Найдите градусную меру АВС, если АОС=82. Решение: АВС – вписанный, АОС – центральный, опираются на АСОтвет: 41. Треугольник и окружность Вписанная окружность.Биссектрисы треугольника пересекаются в одной точке, которая является центром окружности, вписанной в треугольник Треугольник и окружность Описанная окружность.Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром окружности, описанной около треугольника. Треугольник и окружность Площадь треугольника равна произведению его полупериметра на радиус вписанной окружности. Площадь треугольника равна произведению трех его сторон, деленному на учетверенный радиус описанной окружности. Треугольник и окружность Если ∆АВС вписан в окружность и С=90, то АВ – диаметр.В случае радиус описанной окружности равен половине гипотенузы.Если в треугольнике один из углов опирается на диаметр описанной окружности, то этот угол – прямой. Закрепление На рисунке окружность с центром в точке О описана вокруг ∆АВС. Найдите радиус окружности. Решение: АВС опирается на диаметр.Значит, АВС=90, по теореме ПифагораОтвет: 12,5. Четырехугольник и окружность В любом описанном четырехугольнике суммы противоположных сторон равны.AD+BC=AB+CD Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность. Четырехугольник и окружность В любом вписанном четырехугольнике сумма противоположных углов равна 180.BCD+BAD=CBA+CDA=180 Если сумма противоположных углов четырехугольника равна 180, то около него можно описать окружность. Многоугольники и окружность В любой правильный многоугольник можно вписать окружность. Вокруг любого правильного многоугольника можно описать окружность. Закрепление Около четырехугольника описана окружность. Найдите величину А этого четырехугольника. Ответ дайте в градусах. Решение: Сумма противоположных углов вписанного четырехугольника равна 180.А+С=180A=180–56=124Ответ: 124.